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ABSTRACT

This investigation was concerned with various digital filtering
techniques and associated constraints. The synthesis procedures
discussed in this report emphasize the interplay of the various critical
design parameters. Generalized design procedures for lowpass, bandpass
and band stop filters are developed using a tabular procedure which
cusbles one to obtain the digital filter coefficients by inspection.
This approach allows for a simpler evaluation and interpretation of such
problems as coefficient truncation, stability anJd error constraints as
well as illustrating the importance and significance of the concept of
normalization in digital filters. The inter-relations among the
foregoing are discussed in detail leading to performance curves for
various implementations. A bandpass and band stop synthesis technique
which is accomplished through a simple conversion of the lowpass
coefficients is also developed. Bandpass filters having arithmatic
symmetry are then synthesized using a frequency shift technique as well
as a lowpass to bandpass transformation. The validation of these
approaches fer various ratios of sampling rate to carrier frequency is
discussed. An analysis of synthesis errors is then accomplished. Under
the assumption that tabular data is available, design procedures which
minimize the sum-squared crror are developed for design of non-recursive
digital filters. A second approach to the design of these filters
was accomplished under the assumption that a satisfactory recursive
digital filter design using the bilinear transform was available.

114




1I.

Iv.

TABLE OFF CONTENTS

INTRODUCTION
A, Summary of Results
GENERAL DESIGN PROCEDURES

A, Bilinear Transformation - Lowpass Applications

B. Baundpass Digital Filters - LP-BP Transformation

C. Bandpass Digital Filters

A Shifting Technique

D. Bandstop Digital Filters

A Feedback Technique
ARITHMETICALLY SYMMETRICAL BANDPASS FILTERS
A. Design Procedure for Elliptic Analog Filters

B. Digitized Lowpass Elliptic Filters

C. Application of the Shifting Technique

D. Symmetry Errors and Ch:.ce of Center Frequency
E. Application of the LP-BP Transformation
NONRECURSIVE DIGITAL FILTERS

A. Nonrecursive Design From Tabulated Data

B. A Digital Impulse Invariant Technique

C. Zero Removal and Relocation

ERROR CONSIDERATIONS

A, Stability and Coefficient Accaracy

B. Cascade vs, Direct Synthesis

C. Computational Quantization

D, An Auxiliary Storage Technique

RECOMMENDATIONS

Page

18

25

34

34

44
47
53
60
62

65

78
78
84
93
98

108




APPENDIX A A BANDPASS SAMPLING TECHNIQUE 110

APPENDIX B DIGITAL OSCILLATORS 115
APPENDIY C REFERENCES 123 '
APPENDIX D BIBLIOGRAPHY 124 .

vi




EVALUATION

The increasing speed, as well as the decreasing size and cost
ass.ciated with digital circuitry, that have been and still are
resulting from the advances in the field of microelectronics, brings
withii, viuw the likelihond that digital filters will perform within
Teal time devices, almost all the functions now performed with analog
components. The advantage of these digital filters in terms of the
increased accuracies attainable, the ability to change filter shapes,
the time sharing capabilities, the simplicity of the components needed
(multipliers, adders and storage devices) and the variety of attainable
filter chapes, among many other advantages, all serve to illustrate the
importance and widespread application of this discipline.

Apart from "The Advanced Digital Processing' Contract now under way
(Contract No. F30602-69-C-0199) it is strongly recommended that further
work exploit the rich opportunities of this fruitful area. In particular
the error reduction technique discussed in Section V-D has shown
sufficient merit to warrant experimental breadboarding. TFurthermere
an experimental investigation should be initiated concerning the
digital oscillator implementation technique discussed in Appendix B.

A further area in this program looks highly rewarding at this time,
and that is the question of direct digital design in ccmplement to
the presently developing family of digital equivalence procedures.

This approach (direct digital synthesis) warrants detailed
investigation in that it will allow for more flexibility in the designs
that can be achieved.

ejL\prﬁbvg Wmasarqsn
CHARLES N. MEYER
Project Engineer-
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I. INTRODUCTION

The field of digital filters is based essentially on the mathematics of
difference equations. In addition, the work accomplished in the fields of sam-
pling, quantizing and related transformation techniques, have helped in both
the reinterpretation and furthering of this discipline,

The increasing speed, as well as the decrcasing size and cost associat-
ed with digital circuitry, that have been and still are resulting from the
advances in the field of microelectronics, brings within view the likelihood that
digita! filters will perform within real-time devices, almost all the functicns
now performed with analog components. The advantages of these digital filters
in terms of the increased accuracies attainavic, ithe ability to change filter
shapes, the time sharing capabilities, the simplicity of the components needed
(multipliers, adders and storage devices) and the variety of attainable filter
shapcs, among many other advantages, all serve to illustrate the importance
and widespread application of this discipline.

Thus, it is important that design procedures for digital filters be devel-
oped so that filters can be practically and economically synthesized, and that
enrineering designs can be accomplished,

This investigztion was concerned with various digital filtering techniques
and associated constraints. Section II through Section V decvelop in detail the
foregoing. Recommendations for further study and development are discussed
in Section VI. The essential results of this investigation are summarized

below.,




A. SUMMARY CF RESULTS

Section II - General Dewign Procedures

Design procedures for lowpass, bandpass and bandstop digital filters,
are discussed. The bilinear transformnation is applied to the design of lowpass
filters in such a way that the relationships among the required sampling rate,
upper cutoff frequency and order of the filier are brought out. The approach
illustrates the itnportance of the ratio of sampling to cutoff frequency. The con-
cept of normelization and its significance is also discussed. A tabular proce-
dure is developed where these digital coefficients can be written down by
inspection, kFurthermore, this approach allows for a simpler cvaluation and
inter pretation of coefficient truncation, stability and errors, as discussed in
detail in Section V.

A lowpass to bandpass transformaticn is used in conjunction with the
bilinear transformation. This combined transformation is then structurcd in
such a form that a bandpass design can be accomplished by specifying the ratio
of sampling frecuency to bandwidth and sampling frequency to carricr frequency.
Thus, once again, normalized frequency parameters are shown tc o significant.
An example illusirates how the foregoing are rclated to the factor Q, an often
used parameter in analog filters. By an adjustment of the sampling -to-carrier
frequency ratio a technique is described which alliows a lowpass filter to be
converted to a tandparns design without changing any of the coefficients.

A second bandpass design procedure which utilizes a frequency shifting
technique is described. This approach shows considerablce promise in the design
of arithmetically symmetrical filters as discussed in Section III. This shifting
procedure also suggests a technique for generating the coefficients "on line*

from a lowpass design.

Lastly, a feedback technique is described which offers a simple




procedurc for designing bandstop or notch filicrs. wuwnce again, the procedure
is accomplished through a simple conversion of the lowpass coefficients and
shows clearly the relationship between the depth of the notch and value of the

resulting cocfficients,

Section I - Arithmetically Symmetrical Bandpass Filters

A formalized, step-by-step procedurce is outlined for the design of
clliptic analog filters witn examples illustrating the technique., These filters
are then digiti~ted as lowpass filters using the approach discussed in Section II.
To convert these digital lowpass filters to bandpass, the frequency shifting
technique of Section II 1s applied and the mechanism of the coefficient changes
described, The examples chosen indicated that it was possible to reduce the
symmetry errors te zero. Thus, a mathematical analysis of symmetry errors
utilizing this shifting technique was accomplished, It was shown that there are
two types of errors. A symmetry error about the carrier frequency and the
error resultin: from the shift from lowpass to bandpass. It is shown that the
forirer error can be reduced to zero and the latter error to a negligible amount
by appropriately choosing tne relationship between carrier frequency and sam-
pling rate.

It is then shown that for a particular ratio of sampling to carrier fre-
quency, the LP-BP transformation yielded an arithmetically symmetrical
design with 2ero symmetry error. This technique is then comipared with the
shifting technique at the same ratio. Although in general the shifting technique
1s cxcellently suited for the design of symmetrical filters, {(and the LP-BP
technique is not) the LP-BP traanasformation at this one sampling-to-carrier
frequency ratio proves 10 be a simpler technique to apply if one alread: "has the

digital lowpass filier implementation.
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Section IV - Nonrecursive Digital Filters

Under the assumption that tabular data is available in terms of the
desired frequency characteristics, (both amplitude and phase), a design pro-
cedure for nonrecursive digital filters is developed which minimizes the sum
squared error between the desired and actual response characteristics. These
design equations are then related to an equivalent procedure which can be used
when the desired response characteristics are available as a continuous function
of frequency.

A second approach to the design of nonrecursive tilters was accomplished
under the assumption that a satisfactory recursive digital filter design was
available,

Thus the procedure consists essentially of developing a finite Fourier
series approximation to the recursive filter. It was assumed that the recursive
filter was designed using the bilinear transform and that the nonrecursive
approximation was to be a minimum mean square approximection to the recursive
form. A simple technique (referred to as a digital impulse invariant technique)
for converting the recursive coefficients to the required nonrecursive coefficients
is developed. This approach yields zero error in the impulse responses of the
two filters up tc the number of terms retained in the nonrecursive form.

It was noted that therez are essentialiy two types of errors in nenrecur-
sive filter design. The first was due to a transformatio. procedure, the second
due to truncation. The process of zero removal and relocation is discussed in
the context of removing this second source of error. The interpretation of
raised cosinec pulses is accomplished using this technique ac well as the relation-
ships among several other nonrecursive design procedures, Ideally, this

procedure offers the possibility of a complete characterization of finite pulses.
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Section V - Error Considerations

It is noted that there are three types of errors which occur in digital
filter processing. The first of these is related to the process of sampling and
quantizing the input signal. The second occurs as a result of truncating the
representation of the filter coefficients. The third error is referred to as
computational quantization. That is, the errors that occur as a result of
quantizing the weighted multiplications and additions that occur within the digital
filter's arithmetic unit. In recursive filters the results of thece computations
are fed back and utilized in later computations, This section discusses the
latter two types of errors.

The relationship between coefficient accuracy and filter stability is
determined using the tabular approach discussed in Section II. Simple relation-
ships are derived which clearly show the interplay between the order of the
filter, the ratio of sampling rate to critical filter parameters and the bit
requirements for the filter's coefficients. Using this tabular approach, the
filter degradation and onset of instability is interpreted as a function of the bit
truncation of the coefficients. It is note .anat when the ratio of sampling rate
to filter cutoff frequency (in conjunction with the order of the filter) go beyond
a specified value relative to the number of bits retained, the direct approach
should not be used.

The foregoing constraints are illustrated through the design of a high
order lowpass filter synthesized using the bilinear transformation, The superi-
ority of the cascade approach (and the conditions under which it is superior) is
then illustrated by synthesizing a filter vtilizing the same number of bits per
coefficient as in the direct form. This is accomplished twice, The f{irst time
the critical parameter are adjusted so that the direct and cascade approach
yield similar results, Thun this same is paramecter adjusted so that the direct

form does not yield useful results whereas the cascade approach does,

5
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The relationship between the direct and canonical recursion implemen-
tations are discussed as to their performance when computational quantization
occurs.

Illustrative examples indicate that a crossover point exists at which one
implementation is more preferable than the other. It is noted once again that
the determining factor is the normalized sampling rate,

Lastly, an auxiliary storage technique is discussed which offers the
possibility of r.ducing the errors due to computational quantization. An exam -

ple illustrates the approach.

Appendix A - A Bandpasg Sampling Technique

Allowable sampling rates are discussed for bandpass signals so that no
overlap distortion occurs. A curve is obtained relating the allowable sampling
rate to the bandwidth and carrier frequency. As noted in the previous sections,

these relationships are of extreme importance for bandpass filter design.

Appendix B - Digital Oscillators

Various implementations for a digital oscillator are discussed. An
implementation utilizing the canonical form representation yields the smallest
errors (due to computational quantization) and also requires the least amount
of hardwarc, This device is eaceedingly useful both as a frequency synthcsizer
and as a device to be used in conjunction with tracking filters, frequency

translators and bandpass filtering.




1l. GENERAL DESIGN PROCEDURES

A. BILINEAR TRANSFORMATION - LOWPASS APPLICATIONS

The basic form -f a lincar-time-invariant recursive digital filter is

given by

or equivalently in terms of its transfer function as

N
2 a,z™?

) J

H(2) = )_}.v{_o____ u-2

Y b oz

- ~ J

J=0

where 271 = e 79T ig the unit delay operator, T is the time between successive

— A
samples (equal spacing assumed), « is the digital frequency variable, H(Z) the

transfer functi-n, x and Y the input and output samples, and a. and bj the digital

filter coefficicnts, Thus the digital filter is an arithmetic unit which performs
the operations of veighted multiplications and additions on past and present

input and ou’ put data samples. The inclusiou of non-zero bj coeificients gives
rise to the terminology recursive or feedback type filter in which prior output

samples are utilized.

* . . . . . .
Alternate equivalent realizations will be discussed in Section V.

Hx -

It is to be noted that the digital frequency variable, w, appears only as
a productw T = Zﬂ-T/fs where {_is the sampling rate. The significance of the
foregoing will be discussed on the following pages relative to the important

concept of normalization for digital filters.

-




The general problem of recursive digital filter design is the determina-
tion of the coefficients aj and bj so that a desired filter characteristic is obtained,
A basic approach to this problem has been to utilize cxisting continuous (analog)
filter theory to "find" a suitable response and then apply a transformation -
technique which digitizes the continuous filter in such a waj that the response
is transformed without any appreciable distortionf This is referred to as a
digital equivalence technique,

A transformaticn which has been used with considerable success is the

so-called bilinear (1) or Tustin(z) transformation given by the mapping between
the variables S and 2~} given by

i

2 (1-2"1)
S—-...__.ﬂ- II-3
(1+2° 9

or

Sl 1 -(8T/2) .
2= D -4

The advantageous properties oi this transformation ir terms of preser- .
vation of stability (the left of the s plane is mapped into the interior of the unit
circle of the Z plane), the maintenance of the cascading property (as well as
dc gain) and the simplicity of its application in that it is purely algebraic in
nature, has been discussed by several authors.(3) A disadvantage of this

technique is that the transformation given in II-3 causes a distortion in the
1 -jwT

frequency domain. Thatis, withs = juand Z™ " = e , I1-3 becomes
wT -
—— —etano T/2 1I-5

The approach for the desipgn of nonrecursive filters often uses a more

direct approach without resorting to transformation techniques. These filters

(bj = 0,1< j< M ) will be discussed in Section IV,
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H
=

Thus, the relationship between the analog and digital frequency variables is not

linear. The deviation from linearity given by II-5 is dependent on the product
(@T/2). Since T is the reciprocal of the sampling rate, this distortion or 8o-

called warping of the frequency scale is reduced when the ratio of sampling rate

to critical frequency points is made larger. There are however, other con-
Straints on this ratio which will be discussed. Furthermore, compensation of
this distortion will also be discussed.

In that the bilinear transformation properly occupies a central position
in the dcsign of digital filters, it has been utilized extensively in this investiga-
tion. In order to illustrate the design approach and discuss the interrelation-
ships among the various critical parameters, consider a acrmalized (unity
cutoff frequency, in rad/sec) low pass (LP) analog (or continuous) filter of the

form

The concept of a normalized frequency response characteristic is widely accept-
ed in the synthesis of continuous filters as a procedure which allows for a
universal design. In order to convert this normalized response to a low-pass
filter with an upper cutoff frequency of w if one applies the conventional LPto

LP transformation

%
Although the numerator and denominator are usually ot “‘ifferent order,

they can always be written as shown, by adding the required zeros,




in conjunction with the bilinear transformation from S to Z, it can be shown
that the synthesized digital filter H{Z) becomes -

H(2) = G(2)

u 1 - 27}

5:2-——-——I-
T 14 27

or

S A (uuT N-n \ Z-ln ) Z-lN-n
PO R P A N (R A

11-9
w T

N
Z B_( u )N-n (1 - Z-I)n (1 + Z-I)N-n

In the determination of II-9, fractions were cleared by multiplying the numerator
and denominator by (mu'l'/Z)N and (1 + Z'l)N. Now, suppose EU is the desired
digital upper cutoff frequency of the digital filter.

Using the transformation of II-5, the analog cutoff frequency variable

w, is replaced by its equivalence in terms of ;u and then II-9 becomes

N N
N-n -l.n -1, N-n -n
ZAnKm“ -2 0+ 270 Ean?.
H(Z) = ’L;)O - 250 -10
S B KEPa-zhaszhN Ty g
n w d n
u
n= 0 n=0

where the a, and bn are the coefficients of Z " obtainc by expanding the sum-

mations in II-10 and

_ - T
KZB -tan(wu—z——) II-11

u -

Thus, the frequency response of a digital filter is a function of the normalized

(with respect to the sampling rate) digital cutoff frequency. Furthermore, since

10
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Z"l = e'j; T and the An and Bn are the constants obtained from the normalized
lowpass analog filter, the entire digital frequency characteristic (H(2)) is such
that the digital frequency variable wappears only as the product wT. Thus if this
characteristic is plotted as a function of @ T and not w, one obtains a normalized
digital frequency characteristic which provides a universal curve i1n the same

sense as normalization with respect to w = 1 rad/sec did in the analog case.

This is exceedingly important to note in that

the coefficients (a,, b,) for this digital lowpass
filter remain fixed as long as the product w T =
= 2n T /f_ remains fived, v

Therefore, the coefficients for a digital lowpass filter with a cutzff st =
T; = 10 KHz operating on data sampled at fs = 100 KHz ar¢ exactly the same as
those obtained for any cther-i';1 and fs as long as the ﬁg?u/fs = , 1. Hence,
by plotting the characteristic as a function of w T (i.e. in radians or degrees)
one has a "universal” digital filter characteristic (the digital coefficients re-
main fixed) for that particular ratio of-f:l to fs (or equivalently a fixed K: ).
To convert this angular abscissa to actual frequencies, one merely utilizgls the
actual sampling rates used on the input data. These rates are of course dictated
by the bandwidth of the input data and the constraints of the sampling theorem.,
For the foregoing reasons all digital filter characteristics in this report arc
plotted as a function of angle. The above resulis are of course applicable to
bandpass, bandstop and all other digital filter forms. The critical ratio and
parameters in these cascs will be discussed in II-B.

In order to obtain the a's and b's of the digita.ll filter in terms of KJ and
the A's and B's of the analog filter, II-10 must be expanded. Itis also to b‘;
noted that the form of the numerator and denominator of II-10 is similar to one

another. Thus the expansion equations will likewise be similar. During this

investigation it has been shown that these digital coefficients for any order filter

11




are given by the {ollowing table,

TABLE ]
Coefficients P kY P k-1 P KIi-Z P K%
0w 1w 25w N o
u u u u
2%a b 1 1
(aO 0) 1 1
-1 N
z (al'bl) Cl () () ()
-2 N
z C, () () ()
. d. .
i,)
-N, N
z (aN.bN) CN { ) ()
where CN: N

¥ ri (N-r):

The entry di j in row i and column j is given by

- - "
di.j di,j~l [di_1,j-1*di_1,j] f-12

The interpretation of this table to obtain the digital filter coefricients is as
follows: To obtain the numerator coefficients @y substitute for 1:’-i the appro-
priately subscripted numerator coefficient of the analog filter and sum all the
products of the table entries and column headings. The same .procedure is used
for the denominator coefficients except that the analog denominator coefficients
are now substituted for the Pj'

As noted from this Table, the first row consists of all "ones® and the

first column consists of the binomial coefficients. It can also be shown that

12
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the last row is identical to the first row except with alternating signs and the
last column identical to the first column except for alternating signs. Utilizing
II-12, it can also be shown that the sum of the table entries over any column
except the first is equal to zero. The above rcelationships will be found to be
useful in the discussion of coefficient accuracy and stability considerations dis -
cussed in Section V,

As an example of the above, Table II lists the digital filter coefficients
for a sixth order digital filter. The coefficients in this table are obtained

utilizing II-12.

TABLE II

Sixth Order Digital Filter Coz=fflcients

3 6 5 4 3 2
(ao or bo)- POK;+ PIKJ+ P2K6+ P3KG+ P4K6+ PSK; + P6
u u u u u u
@ orb)= 6P K® +ap K2 .2p K? 2P K:-4P.K~ - 6P
1 ) ¥z K3 Ko &3 583 6
u u u u
) 6 5 4 L3 2
a, or by) = 15PKS 5P K> - PRE-3pKk) - P KIssPKS 415P,
u u 1 u u u
A b.)=20P K® ap K +4P K2 -20P
(2, or bs)= 0T SRR R 6
u u u
6 5 4 3 2
(a,orb) =15PK> -5P K2 - P,K2 3PKL- PKZ-5PK- +15P,
Ay u u 11 u 1u
@. orb.)= 6P K2 -apP K>+2p K} 2P K 44P.K— - 6P
5 5 o¥3 (Bt 2K gt d PR 6
u u u u u
) 6 5 4. 3 2
@ orb)= PKE- P24 Pk Pxls PxI. PR_+ P,
11 b} 11 u u u

Although error considerations will be discussed in detail in Section V,
Table Il illustrates some ot the constraints among the various parameters and
how they affect the required number of bits to be setained for the coefficients,

As can be seen fruom this Table (and Table I}, K: appears in the equations
u




»-

raised to powers up to the order of the filter. This factor (given by II-11) is
proportional to the ratio of upper cutoff frequency to sampling frequency. Thus,
when this ratio is small and the order of the filter high, KI; is a small number.

u

Qualitatively from these tables it can be seen that to include the effect of PO a

sufficient number of bits must be retained. For example, if the ratio of

sampling to cutoff frequency is 30:1 then K% ~ 10'6 and as many as six decimnal

digits might be required in the synthesis, Itushould be recalled that the sampling
rate is dictated by the signal bandwidth and aliasing considerations and there-
fore cannot be made arbitrarily smaller. Thus, if it is required to design a
filter with a 3 db point at 30 KH2 to filter a signal with a bandwidth of .3 MHz,
then with a sampling rate of 3 times maximum the ratio discussed above becomes
30:1 = fs:Tu.

As an illustrative example of the use of the foregoing tables, consider
the design of a normalized lowpass elliptic filter* designed to meet the follow-
ing specifications,

Passband Spec. .01db ripple 0< w< !

" s

Stopband Spec. 40db attenuation 1.38 < w< @

The above specifications can be shown to yield a sixth order analog filter of the

form
S4+AZS&+AO
G(S) = — — . s 5 1-13
5°+B,S +B,S +B,S°+B,5°+BS+B

*These filters will be discussed at length in Section III.

ok . ) )
Note the normalizations on the analog filter. That is the stopband

begins 38% beyond the passband.

14
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»
where the coefficients arce given as

TABLE 1l
Ag = 6.79609 B, = 5.71737
= OR = ¢ e
A, =5.4019 B, = 6.29689 g
By = 1.26743 B, = 5.06663 %
B = 3.44569 By = 2.62193 3
B, =1

Solving for the roots of the numerator and denominator yield the pole-zero con-

figuration for this filter given by

TABLE [V
2, = tj51.84538
(zeros)
z, = tj1.41268
p, = -.10102 ti1.12369
P, = -.39699 t 99211  (poles)
Py = -.81294 1 | 45946

It was decided to digitize this filter for a ratio of sampling rate to cut-
off frequency of 18:1, This could correspond to the problem of filtering sampled
data in the band from 0 to 1| KHz from a signal with a bandwidth of 6 KHz that

has been 3ampled at three times its bandwidth or {s = 18 KHz, thus vielding

S e o

fs/Tuz 18.

The procedure to obtain these coetficients will be discussed in Section
III, where additional references on analog filter coefficient getermination will

be given.




For this ratio, the product ;uT becomnes

T

u

Thus K = becomes

u

- 2w o
S T=2n o= = (rad) = 20
'1': B3

K= = tan{—y—) = tan(10°%) = . 17633

u

1I-14

II-15

Using the analog coefficients given in Table III, the factor K; given

u

isbove, and the transformation equations of Table II, the digital filter coef-

ficienis obtained by summii g each row of this table are given as

long as the 18:] ratio is maintained,

TABLE V

ag = . 0365179 bO: 1.6605333
a; = -.0505161 bl = - 8.1507334
a, = -. 0332495 b2 = 17.0485046
a; = . 1075630 b3 = -19.3912146
a, = -.0332495 b4= 12. 6265180
ag = -, 0505161 b = - 4.4568329
ag = 0365179 b6 = . 6656633
{(numerator) (denominator)

A plot of the resulting magnitude characteristic is shown . Figure II-1.

Two significant items are to be noted

16

from the above.

First, the digital

filter obtained is valid (without changing any coefficicnt) at any frequency as
Second, the plotting of the mapgnitude
characteristic is shown as a finction of angle -- not frequency. Thus, the cut-

off's are adjusted to the desired frequency by a selection of the sampling rate.
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The foregoing illustrated a design procedure for lowpass filters which
is simple to apply and which yields accurate results, Consideration on coef-
ficient bit lengths, errors and implementation procedures, will be discusased

in Section V,

B. BANDPASS DIGITAL FILTERS - LP-BP TRANSFORMATION
As noted in the previous section, digital filter normalization can be
accomplished for all filter forms. A transformation from low pass to band-
pass will now be digcussed which illustrates the manner in which the critical
parameters affect the design.
The conventional lowpass to bandpass transformation (LP-BP) used in
analog filter design is given as
LP-BP (analog)
S2 + wZ
S - —pwr— I1-16

where B = W,y mwy (bandwidth); ui = w e,y (center frequency squared) and W, and

w, are respectively the lower and upper cutoff analog frequencies. If 1I-16 is

combined with the bilinear transformation given in II-3, then II-16 becomes

ch)TZ wiTz -1 -2
1+w T2/ 4 1-2[ (V-——)/(0+——)j27 + 2 J
S — > 1-17
BT s
- 1 -2

Now, the bilinear transformation transforms analog frequencies to digital fre-

quencies as

2~ tan 87 11-18

Thus, utilizing the above and the relationships between wg, W) and w, the factors

18




in II-17 become

2 2 w T wZT
1+40°T%/4 l+tan(—2—) tan(T) | .
v = = = -19
BT — - - - K-
w,T w, T w,~w, )T B
2z 2 1 2 1
tan(T) - tan(T) tan (ﬁ——)
© T
2.2, 2, %
l-uoT/4 _ 1 - tan (—2—) _ _
5= = — = cos uo'I‘
l+w T/ 4 2 wOT
e 1 + tan“(——)
2
where
wOT -(.-)OT
— — tan(T)
wlT BIT
—— — tan(——) II-20
u‘zT wZT

Thus II-17 becomes
LP-BP (digital)

1 - 2(cos GOT)Z" +27°

1-21
K_(l-2%
B

The transformation from S to Z is now given in terms of the digital parameters

of (1) digital carrier frequency :0 and (2) digital bandwidth (GZ - 51). Once

again, the parameters are normalized with respect to the sampling rate.




Similarly, the lowpass to bandstop transformation is merely the inverse

of II-21 or
-2
Kyl - 279

I1-22
f_'_ Z-Z

S —

) - 2(cos w T)Z~
(o]

Thus, one now has two simple transformations to convert a normalized lowpass
analog filter to either a bandpass or bandstop digital filter by specifying the

normalized digital center frequency and normalized digital bandwidth. Qualita-
tively, this equation can be related to the lowpass transformation by noting that

the factor KB has replaced the lowpass factor K; and the numerator of I1-21

u
can be interpreted by noting that
) _ _ -jo T +jw T
1-2(cos$°"r)zl+zz=<zl-e °yzTloe 0 11-23
-1 -j:oT —_ 4 -
Thus since 2 =e , the roots have been shifted to w = _ w the digital

carrier frequency.
As a simple example of the application of the LP-BS transformation,

consider the lowpass R-C filter

1
GLP(S) =TT T 11-24
substituting II-22 in the above yields
1-Z(cosw T) z7ly 278
H(Z) = 0 I 1I-25

- - L =2
(1+K§) - 2(cos on)Z + (1 'KE)Z'

Thus 1-25 represents a digitized R-C bandstop filter for any normalized digital
center frequency and normalized digital bandwidth (or notch or rejection band).
The resulting digital filter is of the same form as would result from applying

the bilinear transform directly to the familiar analog notch filter given by

20
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I1-26

where \ is the analog notch frequency and £ is the analog damping ratio. This
is so because the R-C filter is converted to the above by the LP-BS (analog)
transformation.

A further interpretation of the factor KB- or terms of the Q of the filter

is as follows

Kg=tan[(u2~wl)'l'/2] = tanw BfT II-27

B, = dig 1bW 11-28

Now (1/T) = f, = sampling rate. However, if one assumes that

r fg=rT, 11-29
|
f and
To carrier frequency
| Q=% 7 Bandwidh 11-30
T f
then KE- becomes
Ky = xan-r(% 1I-31

Thus, for high Q filters (Q > 10) this can be approximated by

Kg & 1o 1-32
As expected, the higher the Q of the filter, the narrower the bandwidth. If, for
example, k is chosen to be equal to four -- signifying that the sampling rate is
four times the desired carrier frequency and Q s x 100/2 {for exampie), then

the digitized R-C of II-25 becomes

2}
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l+z'2

1,005+ ,9952"

H(Z) =

2

A plot of this filter within the rejection band is shown in Figure II-2,

Note, once again that this filter has been plotted as a function of angle.
Since it was assumed that fs/i:) = 4, then ZJOT = n/4 or 90°. Thus the normalized
center frequency of this bandpass filter is 90°.

The digital LP-BP and LP-BS transformations given in II-21 and II-22

have interesting properties when compared with the LP-LP transformation of

(- zh
K- (1427

w

u

S — II-34

obtained by combining the bilinear transformation with § —» S/wu.
-

Consider 11-21 when the ratio of sampling rate to carrier frequency

fa/l'0 is 4:1. In this case cos :o'r = 0 and I1-2]1 beccmes

s=2
S — g=AtZ) 1-35
E (1-27%9
Similarly the LP-BS transformation becomes
-2
€ —= K.B_ (_1_'_2_2_) 11-36

(1+ 279

Comparing 1I-34 and 1I-35, one notes that if K; is replaced by KE and Z-l is
replaced by -Z-2 then II-34 is converted to II-3151. Thus, one has a procedure
to convert a lowpass digital filter to a bandpass digital filter without changing
the magnitude of any of the coefficients. The constraints are that the upper

frequency cutoff of the lowpass filter is made to coincide with the digital band-

width and the 4:1 ratio be maintained. Thus a digital lowpass filter of the form
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N
E a 27"
n
H) p(2) = 222 1I-37
Y ob_z™"
n
n=0
is converted to a digital bandpass filter of the form
N
n ,-2n
Y a (-n)" 2z
Hp pl2) = S 11-38
n ,~2n
) b (-1)7 2
n=0

Similarly, the LP-BS transformation is cbtained by replacing z"! by
Z-Z and K; by 1/KE- . As an example of the latter, consider applying 1I-34
u

to the analog R-C filter of I-24, Making the substitution yields

-1

H, o(2) = 1+ 2 11-39
LP ) -1 -1
(R:— Mi-2 Y+ (L+2 )
“u
Making the substitution noted above yields
-2
Hpgl?2) = l +?_Z 11-40
Kg(l - 2%+ 0+ 275
-2
T 1+ 2 :
Hps(2) .11

‘(1+KB-)+(1-KB-)2TZ

Equation II-4) reduces to the notch of 1-33 when KE = , 005 which 15 in the ex-
ample,

The above procedures illustrate the use of a digitized LP-BP and BS
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transformations, As noted above, when the ratio of sampling to carrier fre-
quency is 4:1, bandpass filters can be obtaincd without changing the magnitude
of the coefficients, It is to be noted that the highest negative power of Z is twice

what it was in the lowpass case, implying twice the number of delay elements,

C., BANDPASS DIGITAL FILTERS - A SHIFTING TECHNIQUE

The bandpass design procedure discussed in the foregoing utilized the
LP-BP transformation in conjunction with the bilinear transformation, The
analog LP-BP transformation is of a form which yields a realizable (in terms
of R's, L's and C's) analog filter. One ne:d not be constrained in this manner
in the design of digital filters. A technique will now be described which parallels
that of a heterodyuing procedure in analog signal theory.

If one has the Fourie, transform pair

f(t) o= F(w) I1-42

Thern

Fw - uo) + F(w + wo)

g{t) = f(t) cos uot -— >

11-43

Thus if (1) were a lowpass signal, then g(t) is a bandpass signal centered at w,

Consider the application of the above to the lowpass digital filter

N
Y oa z™"
~ “n
sy . n=0
Yy z7!
— n
n=0
By dividing out the denominator, [I-44 can be written as
®
O o =N i
HLP(L) = ) h Z m-45

n=0

25




or, the input-output equation becomes

ao
k=0

Multiplying the h coefficients by cos nESOT and taking the Z transform of I[-45

yields
jZSOT -j :QT)
H z 7 e
H,p(Z) = Lpf®e i B I1-47
BP 2 b

Combining Eqs, II-44 and 11-47 yields

-(k+ _
a bz (k+n) o 5,T (n - k)
0 I1-48

Z-(k+n)

N
_k=0n
Hppl2) = —gx
©

tsgnta g

b b
n

LT -
K cos uOA(n k)

-

k=0n=z=9

(4)

which is of the formi discussed by Broome.

It can be shown that [I-48 can be rewritten as

N+M
YA 2T
pa) n
sy . n=0
Hpo(2) = T —_ 11-49
v g z®
- n
n=0
where
M
A = Y a b cos w T(n - 2r) 11-50
n — n-r r o]
r=¢(
and
M
B = Y b b cos @ T(n-2r) 11-51
n i n-r r o
r=0
26




Thus, the numerator coefficients of the BP filter are a function of both the nu-
merator and denominator cocfficients of the lowpass filter, It should also be
noted that the bandpass coefficients are once again a function of the normalized
carrier frequency and that 1I-48 and II-49 are in the form of a convolution sum
suggesting a synthesis procedure, which will be discussed in the following
sections.

Perhaps the greatest application for this technique lies in the design of
symmetrical bandpass filters -- an application which will b:: discussed at length
in the next section. The above application is due to the fact that the design pro-
cedure was accomplished through a tranuslation of the {requency characteristic
to the left and right by ;o' The LP-BP transformation discussed previously
had properties of geometric symmetry lwﬁ = ulwz).

As in the case of the LP-BP trcnsformation, a simplification is obtained
for a 4:1 ratio of sampling frequency to center frequency. For this case, 1I-50

and II-51 become

M
A =0 Y (Db a -5z
r=0 neven
M
B_= -n" N -n' bob 11-53
r=0
An = Bn =0 n odd

Illustrative examples comparing the above and the LP-BP transformation will
be discussed in the next section, The two approaches presented provide for

convenient synthesis of bandpass {(and bandstop) digital filters in terms of their

critical parametcers,
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D. BANDSTOP DIGITAL FILTERS - A FEEDBACK TECHNIQUE
Consider a bandpass digital filter given as HBP(Z). Then form a new
digital filie- given by
Hps(2) = T RA— H=34
BP
where K is a constant adjusted to be much greater than the maximum gain of

HBP(Z). Now, assuming that the gain of .in(Z) is unity in the pasiband then

HBS(Z) is given by

) 1
= - —_ Lol -5
HBS(Z) TR K In;fh;pas;z)nd 1I-55
" ""BP
In the region where HBP(Z) is amall (KHBP(Z) <«< 1), hBS is
Ho(Z2) r ) In stopband II-56
BS
of HBP(Z)

Thus, the atteruation ia the stopband is controlled by K and the passband gain is
unity.

Consider the digital filter coefficients gencrated by this technique. Let

N(Z)

Then II-54 becomes
. oy _ D(2)
Hps(?) = Brzy T RN(ZY I-58
Thus, the nwnerator and denominator coefficients are given respectively by
a' = b
n n
1I-59
b' =b_+Ka
n n n

The primed coefficients are those of the tesulting bandstop filter. The unprim-

ed coefficients are those of the bendpass Jilter. If this technique is combined
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with the lowpass to bandpass technique discussed in section B, then II-59 be-

comes

=(-1)"b

_ n n
(-1) bn+K(-l) a, 1I-60

q odd

The unprimed coefficients are now those of the lowpass filter,

As an example of this technique, consider a normalized fourth order low-

pass Chebycheff filter with a 1/2 db ripple.

The coefficients for this analog

filter are tabulated in inany analog filter design handbooks and are given as

TABLE VI

Analog Fourth Order Chebycheff LP Filter

o

(1/2 db ripple)

[

1

.379

. 025

L7117

. 197

The coefficients for the lowpass digital filter with a 20° cutoff frequency (18:1

ratio of sampling rate to cutoff frequency) become (using the expansion proced-

ure associated with Table I)




TABLE VI

Digital Lowpass Chebycheff Filter
(200 cutoff)

a0=9.667x10‘4 by= 1.271

a, =3.867x 1073 b, = -4.410
_ -3 _

a, = 5.800x 10 b;1 = 5.896
- -3 _

a = 3.867x 10 b, = -3.588

a. =0.667 x 1074 b.= .837

4= 0 4 .

Ut:lizing II-60, the bandstop filter coefficients are generated with K chosen as

K= 104 (an 80db attenuation), These digital filter coefficients are then given as

TABLE VIII

Bandstop Chebycheff Filter
{(carrier frequency = 900)
Bandwidth = 20°

ag = 1.271 by = 10.938
aj = 4.410 b), = 34.260
ay = 5,896 b, = 63.899
a'6 = 2,588 b, = 35.082
ag = .837 by = 10.504

An interesting feature of this technique is that the resulting "a* and "b" coeffi-
cients (Table VIII) are approximately the same order of magnitude, although the
lowpass filter's numerator coefficients (Table VII) arc approximately 10.4 of the
denominator coefficients. In fact, it can be shown that as the lowpass filter's

bandwidth is made smaller, the "a" coefficients also get smaller. Thus, one

30




can design a notch or band rejection filter with increasing notch depth as the
notch width gete narrower and still maintain a small dynamic range for the
filter coefficients. The bandpass and bandatop filter coefficients of Tables VII
and VIH are plotted in Figures II-3 and II1-4,

The technique utilized here is analcgous to placing the bandpass filter in
the feedback portion of a loop which has a forward loop gain of K, If a bandstop
filter were placed in the feedback loop, the resulting filter would be a bandpass
filter.

Various transformation techniques have been discussed for use in the
generalized design of lowpass, bandpass and bandstop filters. The concept of
normalization, common to all of the above, was noted to be of extreme impor -
tance in the design of digital filters. Techniques satis{ying particular constraints
as well as various error considerations will be discussed in the following

sections,
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III. ARITHMETICALLY SYMMETRICAIL BANDPASS FILTERS

A design technique was investigated which yielded bandpass digital filters
with equail ripple amplitude characteristics in the passband and stopband, having
arithmetically symmetrical cutoff characteristics, Filters having arithmetic
symnmetry have application in many AM and FM proble:ns. Conventional analog
filters which have been transformed to bandpass have geometric symmetry prop-
erties, The approach taken was to design an equiripple or elliptic analog filter
at lowpass and then convert this filter to a lowpass digital filter through the use
of the bilinear transformation, Finally, these filters were converted to a band-
pass digital filter while preserving the desired propertics. Errors and constrain-
ing relations ainong the parameters are discussed. The foregoing procedures

will now be detailed,

A. DESIGN PROCEDURE FOR ELLIPTIC ANALOG FILTERS

It was desired to formalize a design procedure to be used for elliptic
analog filters. As discussed by Calahanss) this procedure can be formélized as
follows:

Consider the lowpass characteristic as shown below

{
!

Figure III-]

14




The equiripple characteristic is such that

With the above definitions, the following procedure is used

I.

(w> w, defines the stopband; w < 1 defines the passband.)

a. atw=20 |T(w)|2=K

b, atw=1 |T(w)]%: L
1 +¢7
1

2 K
c. atw=-w IT(u)l :___..2
< l+£2

_ 2 v 2
Calculate m = l/wC m' = (sl/cz)

Determine the order of the filter, N, by choosing N as the smallest

integer satisfying
K(m)) K(m)

N>

K(ml) {m")

where m, = 1-m, m'l =1-m' and
w/2
- dx
K(im) =
JO (1 -m s’mzx)l/2

which is the real quarter period of theelliptic integral of the first
kind.

N can be approximated for values of m near 1 and m' near zero by
N > (2/«2) In(4£2/cl) In 8/ (w - 1)

Determine the zeros and poles of the transfer function from the

formulas

+ .
Z = =)
T 172 sn(&- K(m); m)

m

1

jsn(t K(m) + j ro:m)

I
N




. hrteatt A ———— b b 10 e |

wheve r=2,4, ..., N-1 N odd

K(m)sc™! (;‘:jm'l)

r_ = ] K(m) sinh-l (-l-)
° NK(m') K(m') €)

for m' near zero,
The term sn(.) is the elliptic sine and the term sc°l(¢:m) is the
elliptic arc tangent,
As an example of this procedure, consider the following filter specifica-
tions

Passband - 2db ripple C<w< 1

Stopband - 25db min, 1.33 < w<

For this example, the above parameters become

m=,560 K(m) = 1,909
€, = .765 v _= 438
1 o
ez=161 N = 2.98 (choose N=3)
I - . a4 = - 129+ ;
zl-.31.47 P, = . 4063 P, L1291 j.962

With the above pole zero configuration, the resulting transfer function becomes

2
_ S+ 2.16
G(S) = —y > I1-1

S+ .7218" +1.0615 + ,437

Using the above approach, several lowpass elliptic filters will be synthesized

and then digitized using the bilinear transformation.
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B. DIGITIZED LOWPASS ELLIPTIC FILTERS

i atal b,

+ itk

The general pole-zero configuration for a lowpass elliptic filter is shown ,

below,
¢
\ g
3 T
h ¢ 1 |I
X x- 1)
y R P
f—t -t o h
V. A : RN l L
ﬁ,(x | RS ' '
-Gy~
X
X
Gy =
65*
T‘_Go—-

( Po:Go
P, Gt JJ?.,
Py 2Gat iR,
_Ps:Gs iRy
2,200,

ZEROS Jz‘, = t)R.

\26

=t

if,

The pattern shown is for a seven pcle, or seventh order elliptic filter. The pole

positions for these filters lie on an elliptical contour.

The values for these

poles and zeros were determined so (hat they would satisfy the following

specifications:

Passband Spec. < ,5db ripple

Stopband Spec. €0 db min.

Of_wsl

1.2 < w< @

A seventh order filter with the following characteristic was found to

satisfy these requirements.




TABLE ]

p0=.3889 z

p, = .0377 t351.0120 2,
= +

Py = . 139915 .8939 z,

pg = 2932 %) 5731

[ [
'+ 14

]
'+

j2.391
jl.2711

j1.4709

Applying the bilinear transformation to this filter with a samplinp rate

equal to 4 times the cutoff frequency -- or a normalized cutoff at ;uT = 90o

(K= = tan(45°) = 1) yields

u
7
' a z™n
n
_n=0
H(Z) = =
Y b 27"
n
n=0
where
TABLE U1
a, = .556 b0= 12.
a = 2,007 bl = -14.
a, = 4. 254 b2 = 30,
a. = 5.976 b, = -26
3 3
a, = 5.976 b4= 24
= 84 = -
ag 4,25 bb 13
a, = 2.607 b6 = 5
vq = 556 b7 =~ 1
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.018

. 095

. 421

. 917

.519
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A plot of this filter is shown in Figure III -2,

A second design was carried out for a filter with greater attenuation in
the stopband but a larger transition region. The specifications on this filter
were

Passband Spec. < .5db ripple 0< w

A
—

Stopband Spec. 90db mnin. 2< w<l

A seventh order filter with the following pole zero pattern was found to

satisfy these requirements,

TABLE IT
Py = - 325 z,=1j4.354
p,=.057tjl0l6 2,=1%;2.044
p3=.17:+__; . 841 z6=+_jz,-;'~)0

p5=.273tj . 486

Applying the bilinear transformation to this filter with a normalized cutoff at

G T = 90° yields

I11-3

where the coefficients a and bn are as given in Table IV,
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TABLE IV

ao= . 744 b0= 11,077
al = 4,075 bl = -16.234
a2 = 10, 46°¢ b2 = 28,883
a3 = 16,172 b3 = -27.885
a, = 16,172 b4= 23.559
ag = 10, 465 b5 = -13,562
ag = 4, 075 b6= 5,630
a, = . 744 b, =-1,371
] 7

A plot of this filter is shown in Figure III-3,

A third elliptic filter syrthesized was that discussed in Section A with

O

the normalized cutoff frequency at GuT = 20", The characteristic for this
filter is
3
- a Z-n
- °n
n=0
H(Z) = S 11-4
Vop z?
I~ n
n=0
where
TABLE V
ag = . 188 b0= 1.162
al=-.l41 bl=-3.081
a2=-;l4l b2= 2. 847
ag = . 188 b3=-.903
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A plot of this filter is shown in Figure III-4,

A technique which ronverts these lowpass digital filters to bandpass

filters will now be discussed.

C. APPLICATION OF THE SHIFTING TECHNIQUE

It was initially decided to utilize the filter of Figure III-4 for the synthe -
s8is of an arithmetically symmetrical bandpass filter. The technique used is the
shifting technique described in Section II and qualitatively consists of shifting
the lowpass characteristic to the left and to the right by an amount (in degrees)
equal to the normalized center frequency. As discussed, this is simply the
digital counterpart of multiplying a time waveform by cos wot and observing the
resulting spectral plot.

The required equations for this transformation are given in Section II as

M
A = Z a r br cos uOT (n - 2r)
r=0
III-5

M
Bn = Z bn-r br cos uoT (n -2r)
r=0

where the "small” a's and b's are the numerator and denominator coefficients
of the lowpass filter and the "capital" A's and B's are the corresponding band-
pass coefficients. From this equation it can be seen that the bandpass coef-
ficients are obtained by a weighted convolution (or correlation) of lowpass
coefficients, where the weighting function depends on the desired carrier fre-
quency.

Utilizing these equations with a normalized center frequency of

;oT = 90° yields
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3
-2n
Y A, 2 ;
H(Z) = “;0 III-6
-2n
Z BZn z
n=0
where
TABLE VI
A0= .219 B0= 1,351
AZ = ,063 B2 = 2,910
A4= . 053 B4=2.528
A6= -.170 B6= .816

A plot of this filter is shown in Figure III-5.

A detailed computer analysis of the magnitude characteristic of this
filter shows that this filter is arithmetically symmetrical about 90° with no
symmetry error. A detailed comparison of the lowpass elliptic filter in Figure
II1-4 and the bandpass filter in Figure III-5 shows that the passband error
between these two filters is less than 1/2%, These errors are due to the tails
of the shifted characteristic extending back into the passband of the filter.*

Based on the above results, it was conjectured that the symmetry error
can be reduced to zero. The following derivation will show this to be so for
particular values of the normalized (with respect to the sampling rate) carrier

frequency.

*In comparing Figures IlI-4 and III-5, the factor of 2 from Eq. 1I-47

must be included.
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D, SYMMELTRY ERROR AND CHOICE OF CENTER FREQUENCY

Consider the lowpass filter to be expressed as a function of angle, that
is F; 5(8), where 6 = wT and « is the digital frequency and 1/T = f . the sam-
pling rate. Now due to the periodicity of digital filters one has

FLP(G) = FLP(G +2n) -1

Because of symmetry requirements

¥y pt@ = |F pl-0)] -8
Therefore
|F pl-m + @) = |F; plr - 8)} II1-9
Now
FLP(_" + 8) = FLP(-ﬂ' + 0+ 2n)= FLP('IT + 6) III-10
or
|FLP(n +0)| = |FLP(n - 0] uI-11

From the discussion in Section II, it can be shown that the bandpass filter resuit-

ing from utilizing this shifting technique yie!ds a bandpass filter FBP(S) given

as (neglecting a scale factor of 2):
FBP(G) = FLP(G + Bo) + FLP(G - 60) I11-12
where 6_ = :oT and 30 is the desired center frecuency.
Now consider the response of the bandpass filter at a distance ¢ (in angle)
away from 90. Thus,

FBP(Bo + ¢) = FLP(Z eo + o) + FLP(¢)
1II-13

Fppl@, - ¢) = F| p(26_ - ¢) + F; p(-¢)

In order for symmetry to exist at bandpass, Eqs. HI-13 would have to be such




that
IFgpl, + &) = |Fgple, - 1II-14

Moreover, :n order for there to be no shifting error from lowpass to bandpass,

one requires that

Fppl®, + ¢} = Fi pl®)

III-15
Fpp(0, - ¢) = Fy p(-4)

(or, the above modified by a scale factor).
As can be seen by comparing Egs. III-15 and III-13, this latter error is
LP-BP SYM. ERROR = FLP(Z 0, + ¢) I1-16
or -
FLP(Z 8, - $)
Consider the case where Go = w/2. This choice of center frequency is equiva-

lent to a sampling rate of four times the center frequency. That is

= 21"TQ " T.O 1
9°=WOT=T=T;—£—;=T I11-17

For the above choice of 60. Eqgs. III-13 beceme

Fpp(f, t¢) = F; plr +¢) + F, p®

II1-18
From Egs. III-9 and III-11, Eq. III-18 becomes
FBP(6°+¢)=M1< A1+M2< A2=K<a 1I1-19

*
Fop(0, = ¢) =M, <-8, + M, <-4, = Fo (6 +¢)

Thus for a 4 to 1 ratio of sampling rate to carrier frequency there is no sym-

metry error at bandpass. The error between the lowpass filter and the
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bandpass filter is given by

FLP(n‘ + &) = M1 < Al

or

FLp(n -¢) = Ml < -Al

However, since the filter passband extends for t 20° (see Figures I1I-4 and
I1I-5), Ml is extremely small within the filter passband. It can be shown that
for the example under discussion, the maximum passband value of Ml =.,03
yielding an error of approximately 1/2%0.

Consider now the interesting cho’'ce of eo = w. This corresponds to a
two-to-one ratio of sampling frequency to carrier frequency. With the above
choice, Egs. III-13 become

Fapldy +9) = Fy (21 +9) + F| (6) = 2F L(¢)
II-21
Fapl6y - ¢) = F p(27 - 3) + Fy p(-¢) = 2F p{~d)
since

Fop2m +¢) = F o) Fy p(2m - ¢) = Fy p(-¢) 1ur-22

Thus for tnis choice of 60 there is no symmetry error at bandpass and nc¢ shift-
ing error firom lowpas.. to bandpass.

The above choice of 60 was applied to the lowpass elliptic filter described
in Eq. IlI-4 and Table V. Utilizing the technique discussed, the bandpass filter

1§ given as

Bp(z.) e III-23




where the filter coefficients become

TABLE VII

AO= .21875370 B0= 1.35144966
A1 = ,74456616 B1 = 7.17729147
AZ = . 80670596 BZ = 16.1488383

A3 = -.08252552 B3 = 19.6781117
A4 = -, 85454586 B4 = 13,6836573
AS = ,66294855 B5 = 5.14441316
Ab = ~,17000589 B6 = ,8162383720

A plot of this bandpass filter is shown in Figure IlI-6, A comparison of the
computer print-outs for this filter and the equivalent lowpass filter bears out
the foregoing analytical conclusions.

It is of interest to note the recursion equations which result from the

above choices for 80. In general these recursion equations are

M
A = Y a _b_cosfe (n-z;)]
n — n-r r LO
r=90 :
M 1I-24
B,= 5 b.b,_ cosfe (n-21)]
n - r -r Lo
r=0

where 0= o T.
o o

For 60 = w (a two-to-one ratio), these equations become
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.25
M I11'=25

Thus, the bandpass {ilter coefficients (An' Bn) are the result of convolving the
appropriate lowpass filter coefficients (an, bn) with each other. Since a digital
filter performs the operation of convolution, this suggests the {ollowing auto-
mated procedure to generate the bandpass coetficients cnce the lowpass filter
has been implemented. If one assurmes that the lowpass filter has been synthe-
sized using the direct form* and the "x bank" or feed forward scction is
impulsed, then the outpuls are the "a" coefficients. If these outputs are fed
into the "y bank" or feedback section, its outputs are the "A" or numerator
coefficients of the bandpass filter. The "B'" coefficients can be obtained in a
similar manner using only the feedback bank. This procedure appear: to be of
advantage in that the lowpass coefficients can be altered and tne lowpass filier
itself used to generate the bandpass equivalent,

The cquations analogous to II-5 for 00 = n /2 (a four-to-one ratio) are

o
1vi

A - ) T % Rt .

.’\.n = (cos n -2—) 2 (-1) a .y Dr
r=0

I-26
M 11
- T LT

Bn = (cos n } 2 (-1) bn-r br

r=10

"This approach is not limited to any one implementation,
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A similar implemeuntation can be utilized for the above. It should also
be noted that A’ and Bn are both zero for n odd, Thus, although the total delay
1
required for both bandpass filters are the same, only half the multiply-ada

operations are required when a four-to-one ratio (fs/i"0 = 4) is used,

E. APPLICATION CF THE LP-BP TRANSFORMATION
In Section II, the lowpass tc bandpass transformation

I - 2(cos 3_T) 27ty 2z

- 11-27

Kg(l-29

S —

was utilized in the design of bandpass digital filters. Mention was aiso made
of the simplification resulting from adjusting the sampling % to be four times

the carrier frequency. This choice causes w T = v/2 and Eg, I1I-27 becomes
v

p

Kg(l - 279

&)

It is desired to investigate the application of the LP-BP transformation tc the
design of arithmetically symmetrical filters for tue above choice of normalized
digital center frequency. This transformation is recognized as being that of the
lowpass bilinear transformation with 2! replaced by .22, Since -27° can be
written as

-Z-ZzetjTr ejz;T=e2j(;Tt%—) nai-29

. . . N} .
This transformation can be viewed as a shift of 90~ accompanied by a scale

change by 2 factor of 2. Thus, with these parameters, a lowpass filter
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——

Y 4 77D
- n
oy = n=47_
HLP( e
Y -n
L bnZ
n=4o0
becomes
N
~ n . -2n
roa -1tz
5y . n=0
Hppl?) = —
n ,-2n
L b0 2
n=0

Now, consider the bandpass filter evaluated at (8 + w/2) = 5T,

becomes
N
Z an(_l)nc-Jnne-ZJnG
.n=0
I_lBP(Z')- N
2 b (_1)ne-3wne-32n9
n=0
N
T oa e ?in®
~ 'n
n==0
Hppl2) = —x
AN ~23in9
L bne
n=0

111-30

I11-31

Equation IlI-31

I11-33

This is recognized as being identical to the lowpass filter evaluated ai 2 0.

Similarly, HBP(TT/Z -6 = HLP(~28), Thus, this technique yields an arith-

metically symmetrical lowpass filter with no symmetry error cither at band-

pass or in the shift from lowpass to bandpass, Two cxamples of this techaique

are a 4th order Chebycheff lowpass filter and a 10th ordcer Butterworth lowpass
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Llter that have been shifted ro bandpass., The cocllicients for these filters are
TABLE VIII

10th Order Butterworth

Lowpass Coefficients Bandpass Coefficients
tan(:\oT/Z): 1 GOT:n/Z
Numerator Denominator Numerator Denominator
ao = 1 bO = 345.252 AO = 1 BO = 345,282
a = 10 b, = -4x107" A, = - 10 B,= 4x107°
322 45 b2=402.771 A4= 45 B4=462.771
a, = 120 b. = 8x10° A, = =120 B, = -8x10°
3 3 6 6
- - — -— > - -
uA—ZIO b4— 185,270 AB— 210 B8— 188.270
a. = 252 b= -8x107> A, = -252 .= gx107°
5 5 10 10
- = ? 17 = =
a6- 2i0 bb_ 26,615 AIZ 210 BIZ 26.613
a. = 120 b= -9x107° A= -120 B, ,= 9x107°
7 7 14 14
a8= 45 b8= 1.093 Al(): 45 Blf): 1.093
a_ = 10 b= -4x 1073 A, =- 10 B.,= 4x1073
9 9 18 18
alO: 1 b10= .024 A20= 1 B20= .024
(An: 0; n odd) (Bn = 0; n odd)




TABLE IN

4th Order Chebycheff

Lowpass Cocfficients Baudpass Coelficients
tan{G T/2) = .17633 (20° cutofi) S,T=mw/2

Numerator Denominator Numeraior DNenominator
a0=l boz 5.319 AO= 1 BO=5.319
a = 4 b1 = -2,828 A, = -4 BZ = 2.828
az—b b2= 4.841 A4= 6 B4=4.l40
a3=4 b3= -2.140 A6= -4 B6=2.140
a,=1 b4= .870 A8= 1 B8= .870

(A_ = 0; n odd) (B_ = 0; n odd)
n n

These filters are plotted in Figures III-7 and 11I-8,
It is of interest to note that the scale change caused by this transforma-
tion yields a bandwidth at bandpass that is « ne half that of the lowpass filter.
Thus, for the 4th order Chebycheff filters the bandwidth is ¥ 20° at lowpass and
t 10° at bandpass. Of course, since these bandwidths are normalized to the
sampling rate, the actual bandwidth can be controlled by this rate. It hould
also be noted that the filter coefficients generated are obtained directiy from
the lowpass design, By contrast, the shifting techrique used in the foregoing
yields a more complicated structure. For example, the third order elliptic
filter of Table V Lacd bandpass coetficients using the shifting technique as given
2-2 a

: e s e =1
below. The ccellicients obtained through the substitution 2 7 ~ - re shown

in parenthesis in Table X,
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TABLE X

Elliptic Filter Coefficients

Ay= .219(.188) B, = 1.351 (1.162)
A, = .063 (.141) B, = 2.910 (3,087)
A= .053 (-.141) B, = 2.528 (2.847)
Ay = -.170 (.188) B, = .816 ( .903)

Although the coefficients are similar, those of the shifting technique are gener-
ated through a convolution formula, whereas those of the present technique, by
a simple sign change. Thus, if it is possible to use a 4:1 ratio, the LP-BP
procedure is preferable. For other ratios, however, the LP-BP procedure
does not yield satisfactory results.

Two approaches to the synthesis of bandpass digital filters having arith-
metic symmetry properties have been discussed. The shifting technique was
found to be of general applicability and was shown to yield negligible errors
under appropriate choices of the ratio of sampling rate to desired carrier
frequency. The equations relating the coefficients of the bandpass digital filter
to those of the lowpass digital filter were shown to be in a form convenient for
"on line" synthesis, Lastly, the LP-BP transformation was shown to be an
excellent (and simple) technique if the problem constraints allowed the use of

a 4:1 ratio of sampling rate to carrier frequency.
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IV. NONRECURSIVE DIGITAL FILTERS

. . . . s *
The design of a nonrecursive (i.e., finite memory) digital filter consists of

choosing coefficients hn so that a frequency response characteristic of the form
N ——
H(z)= ), h 2" rARE T -1
n=0

- * 3 » 3 -‘ -.—
has the desired shape. From this equation it is seen that with Z " = e joT

H(Z) is represented as a finite Fourier series with coefficients hn’ The overall

*
Since the input-output equation of a nonrecursive filter is given by

N
Yo = L Pr*nk
k=0

it can be seen that the outpui samples are a function of the present input as well
as past inputs up to the upper lirnit of the summation. Thus, N is often refer-

red to as the memory of the filter.

o . - .
The link between nonrecursive digital filters and analog tapped delay
line or so-calied transversal fillers can be seen by noting that the input-output

equation corresponding to IV-1 is given by

N
Yn = Z hk *n-k
k=0

whereas that of a transversal filter is given by

N
y(t) = Z Ak x(t - kT)
k=0

Thus, if the output is sampled at times t = NT the hk and Ak are equal to one

another. The Ak are the tap weightings.
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question is, how does one choose these coefficients in some optimum manner,
or, from what time function do these coefficients come ? If the nonrecursive
filter is viewcd a3 the f{inite memory counterpart of a recursive digital filter
which has been synthesized through a transformation technique applied to an
analog filter, the P-‘n coefficients can be related to the impulse response of the
analog filter. If the standard Z transform were applied to the analog filter,
then the hn can be shown to be related to the first N + 1 amplitude samples of
the impulse response of the analog filter. If the bilinear transform were applied
to the analog filter, the hn coefficients would be related to the first N + 1
coefficients in the Laguerre expansion of its impulse response. Still another
approach is to expand the desired frequency response in an infinite Fourier
series and then choose the first N + 1 terms or some modification thereof to be
hn coefficients,

Inherent in most of the above procedures are two general sources of
error between the desired frequency response and that finally obtained, The
first error is that generated by the particular transform technique utilized.
This error can normally be controlled and contained within tolerable limits.
After obtaining a satisfactory design, this set of coefficients is truncated to
achicve the finite memory indicated in IV-1. This truncation procedure is
equivalent to multiplying the time function represented by the infinite set of
coefficients by a pulse of extent NT. This procedure produces an error equiv-
alent to convolving the infinite memory response with a sin x/x (in frequency)
form whose central lobe width varies inversely with N, the memory of the
filter. While this is true, it appears desirable to have considerably more con-
trol over this type of error.

The nonrecursive design technique to be discussed in the following sec-

tions include design procedures from tabulated frequency data, a digital

4
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impulse invariant technique and the process of zero removal and relocation as

they anply to rnonrecursive filters,

A. NOWRECURSIVFE DESIGN FROM TABULATED DATA

The majority of design procedures are prelicated on the existence of a

continuous function of trequency. Often,

however, the amplitude and phase

characteristics of the desired frequency response characteristic are avai.able

only at discrete points. Thus, a design

procedure was investigated for this

application. With the nonrecursive filter of IV-1 rewritten as

-j2Tw T/fs
Iv-2

n=0

where fs = 1/T = sampling rate, and the desired frequency response dita

{magnitude aad phase) gii=n as {I(fk) where

kfs

k=10, 1v-3

the hn cocfficients were determired so that the sum-squared error is minimized.

With the above assumptions this sum squared error can be written as

R -1
S = v

k

— H(f,) -

U

Toing a partial with respect to

the result equal to zero and utilizing iV
f
R -1 -j2m £ Tk N
I s\
0= H(fk) e o hn
k=0 n=0

With the use of the identity

2
N . s =
-jerwnf /f
Nh e ! k/ s]
2

n
n= O J
the digital filter coefficicnt h)€ , seting
-3 yields

f

—

-j2w (£ +n) —j2w s +n){<‘_

o

Ve
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Qo
Sk 1
Y o2 e ——y V-6

K= 0 1 - 2
Equation 17V -5 becomes
t f

R -1 jane £ N S2m(f +n) -fl- 2w +n)-};i-
T e s _ g s l ~e

b H(tk)e = ) h_e X

- =" -j2n{f +n) 4
k=0 n=0 R 4

IV-T7
If it is desired to synthesize thc responsc over a half-period, then {1 = 0,

R = K/2 (K even) and 1V -7 becomes

K

va . Kk N

-jZw{ 1
K:zz h — V-8

n -y (f +n)
-0 n=0 1 -e /K

for (£ + n) odd and k > 2N, zero for (£ + n) =2ven.
Although the above equations can be used to determine the required hq,
it was noted that a considerable simplitication comes about if the desired digital

filter can be written in the form

N
H(Z) = ‘3 h z™® iv-g

n
ns -N

For this case, a development paralleling that discussed ubove leads to

f £
k . . 1
K l,. ’JZTI’f T N °)2ﬂ(f +n)?— -jZn(l+n)
T s _ T s l e
H(f )e = Y b e x
— k ] n 1 -y2w {4 +r97
k=0 n=-N €

IV-10
Assuming that(f +nyK is not an integer, the term in the square brackets is

equal to zerc, except for n =-f . Ip that case, the form of IV-10 reduces to
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{

K-l jeu ot =5

1 T fs,

h, =g ¥ Hif)e . K>2N IV-11
k=0
For synthesis over a full period f = -fS/Z and h, becomes
£
fk
A fs e 1K-l~ +_]2ﬂ’l?; £ iy
hy = gg H- ) e " e g ) HE e + g i) !
k=1

Iv-12
Equation IV-12 is recognized as being equivalent to a trapezoidal integration of

. f
1 “fS/Z R ')21'1’! -f;
ht = T; J H(f) € df
-18/2

where H{f) is defined on K points over {_.

IV-13

To obtain an expression in terms of magnitude and phase characteristics
one notes that

H(-1) =f1* ()= A eI 8D

IV-14
where A(f) is even and 6.f) is odd, then hl becomes
fs/Z
A 1 I'4
h =2 | Alf) cos|B(f) - 27 f = | df IV-15
¢ T T q
s O s
or
\ N-} £,1 g fy
hy, =5 |20+ Y, A(fk)cos[e k)‘z""f;J* A(—) cos 8(~5)
k=1 IV-16

Thus, relationships have been derived (IV-12 and 1V -1€) which can be utilized

to design nonrecursive digital filters from tabulated data.
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B. A DIGITAL IMPULSE INVARIANT TECHNIQUE

It is often of interest to synthesize a nonrecursive digital filter which
approximates (in some sense) a recursive digital filter. Thus, it is assumed
that the recursive digital design satisfies the {ilter requircments. However,
it is desirable to e¢liminate the {feedback terms (bj coefficients) and obtain a
nonrecursive form which requires the same amount of processing. Thus, the
restriction might be such that the synthesis is to be carried out so that the
total number of coefficients are the same for both recursive and nonrecursive
designs,

Consider the transfer function of a recursive digital filter given as

]z
R
N
]
o

-

IvV-17

Wt~ Zeg
o
b
N
'
e

o]
o

-~
By dividing the denominator into the numerator IV-17 can be rewritten as

o)
-n .
Hp(2)= ), C 2 IV-18
n=0
where the Cn are related to the a, and bn by
%o
o wo
o
(a, -b, C )
C, = —p—2n ! © IV-19
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or, in general by

min [k, M] b

-k j -
C, =t _Zl Tck'j IV-20
J:

where M+ 1 is the number of denominator coefficients and the summation runs

from j=1 to the smaller of the two values k and M.

The nonrecursive digital filter is then of the form
N
S o -n
(2)= > h_ Z 1v-21

The question is -~ how should the h's be chosen? Or, what is the relation-
ship between the h's and the C's ? If the h's are to be chosen to yield a
minimum mean square approximation to l—!.R(Z), then the hn should be equal
to the Cn up to n=N. The justification for this is that IV-13 is in the form of
an infinite Fourier series and IV-21 i3 in the form of a truncated Feourier
series. Furthermore, if H.NR(Z-) is t2 apprcximate a recursive filter synthe-
sis through the use of the bilinear transformation, then the desired shape
should first be synthesized with a bilinear transformation and then the C's
of Eq. IV-2] obtained threugh the use ot Eq. IV-20. The conventional
approach is to approximate the desired shape directly with a Fourier series
and then truncate after a given number of terms (equal to N+ 1 in the exam-
ple).

A comparison of the various approaches is shown in Figure IV-1. The
ideal filter to be approximated is a rectangular filter whose bandwidth (cut-
off frequency) is equal to (1/4) of the sampliug rate (i.e., ;CT = 90%), The

bilinear approximation illustrated (curve i} is a digitized 4th order
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Butterworth filter with a resulting transfer function

1+427% 4 62'2+4z'3+ 274

(2) = 1v-22
fr 10.64+5.172°% + 188 273

The above equation was obtained utilizing the transformation technique dis-
cussed in Section II. Curves 2 and 3 are obtained by applying Eq. IV-20 to

Eq. IV-22 yielding a sct of nonrecursive coefficients given as

TABLE ]
C0= . 094 Cl = .376
(,2=.5IB C3=.193
C4=.159 C5=.101
C, = ,068 C. = .045
6 7
CB: .030 C9= . 020

The nonrecursive filter given as curve 2 utilizes CO through Cg' The filter
of curve 3 utilizes h, through hT'

Curve 4 is obtained utilizing a conventional Fourier series expansion

of the ideal rectangular filter. Thus the coefficients can be shown to be

Bo =7
Iv-23
h =h . Sinn n/2
'n - -n ; nIr
where
10
1{4(74) = S h‘l -5 7‘_“ 1Iv-24
u=-0
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As can be scen from Figure IV-1, curves 2 and 3 represent signifi-
cantly better approximations to the bilinear recursive form than the conven-
tional Fourier approximation. The ripple characteristics in both the pass
and stopbands have been reduced. Another comparison of these various
filter forms is shown in Figure IV 2. Here cach of the four {ilters accepted

a step at its input and the filter outputs computed. Table II summarizes the

results,
TARLE NI
Fiiter Outputs {for Step Input)
B Fourier
Bilinear 10 te.m Approx, 8 termy Approx. Approximation
Outputs (Curve 1) (Curve 2) (Curve 3) (Curve 4)
Yo . 094 . 094 . 094 . 064
Y .47 . 47 .47 .064
Yo . 9856 . On8 .988 - .042
Y 1.181 1.181 1.181 - .042
Y4 1,022 1,022 1.022 276
92 . . .77
Vg .921 921 921 6
Ye .989 . 989 . 9869 1.094
Y- 1.035 1,034 1.034 1.094
Yg 1.005 1.004 .988
Yq . 984 . 984 .988
9 05
Yio . 998 1.053
) ¢
y To 1.000
| D
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From this figure, thc improvermcent in curves 2 and 3 as an approximation to
1 fover that of the Fourier approximation, curve 4) is evident,

The approximation technique used to obtain curves 2 and 3 can be
termed a "Digital Impulse Invariant® technique 1n that it yields an approxima-
tion to the impulsc responsc of the recursive (pilincar in this case) filter
which is exact up to the truncation point -- that is, up to the last coefficient
retained. This procedure is the digital counterpart to the conversicn of an
analog filter to a digital filter through the use of standard Z-transforms,
This approach yiclded a point for point match with the analog filter's impulse
response, Still another interpretation of this tecchnigue is that the bilinear
transformation 'rounded’ the corner of the ideal filter of Figure 1V-1 and
therefore this impulse invariant technique provides a simple procedure for
smoothiznn or medifying the Fourier coefficients, Lastly, this procedure is

simple to implement.

. ZERO REMOVAL AND RELOCATION

As noted previously, there are often two sources of error inherent in
the design of noni ccursive filters, The second of these errors was due to
the truncation procedure used to yield a finite memeory filter., A possible
approach to nonrecursive filter design is to view the problem in such a way
that the second sourcc of error appcars to be abscnt, This is accomplished
as follows: From Eq. IV-1, one can view the N+ 1 unknown ccefficients as
amplitude samples of sance time waveform. Thus, this time waveform is
finite in extent (all other samples are actually equal to zero) by definition and
not due to truncation. Viewed in this manner, the {frequency response
characteristics achicvable are those whose transiorms are finite pulses,

1deally, it would be desirable to have the complete mapping of all finite pulses




and the variety of frequency responses they yicld, Then one would choose the
response "closest" to the one desired and then sample the tinite pulse at an
appropriate rate. Althcugh the above mapping was not accomplizhcd, the
tollowing will illustrate the procedure and will serve to tie topether the
various approaches to nonrecvrsive design.

Initially a characterization of finite pulses was desired,  As noted by

Campbel', et, al,(6)

a pulse (in time) of finite extent is comnpletely character -
1zed by the fact that its transform (complex Fouricr) has an infinite set of
seros. This iz most easily secn by noting a rectangular pulsce and its sinx/x
transform which consists of an infinite number of Zeros uniftormiy distributed
over il real frequency axis, Subject to certain constramts“) these zeros
can be removed and/or relocated to alter the freguency characteristic while
still retaining the finite pulse structure of the time waveform.

Perhaps the simplest illustration of the process of zero removal is to

consider a rectangular pulse existing for !t; < 172, If the first zero pair is
removed, it can be shown that the resulting pulse i2 of the form
(1 + cos Zn t) p(1) IV -25
where p(t) is the rectangular pulse exisiuing over ‘tl < 1/2.
J
Thus, ihe familiar cos“x weighting function can be viewed in the {re-
b
quency domain as a muitiplication of the sin x/x forin by a factor (1,/1 -{),
Similarly, the form of the pulsc, as a result of removing N zeros from a

rectangular pulse whose extent is from - < t < 7 can be shown to be

(t) - 1 - A\ A cos P' T (t + 1‘) . ; = _—l:‘_ IV-26
g 7’; —~ n PAN | V ' "n T
n=1

where

~1
T
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k=1 k=1
k#n
. . ; oyt , . v yqees - 4 t o . I
and the seros ot the rectangular pulse are at 3 rl. T IR ln'/rl'

From IV-20, 1t can be shown that G(w) the Fourler transform of glt) is

B N oA /ink sinn(w-k) Siwk sin (wd kO]
Ste) o2 | 2N N R I 1 2y e i 2
N oW — 2 n]\.--T&-.') wt K.
i'- ] 1 1
[ . o Ir\ sinm{w-k.)
C,(u) - 2“ SI1N T oW - \/‘ 1

A costm Kk, —— 1V-28
L L i i v lo- Ei’
Thus, the shape of the pulse in the frequency domamm is determined by a

weighted summation of delayed sin x/x waveforms.
'or o pulse ol finite oatent, 1t can alse be shown that its Fourier
tranaforis ¢an Le written at

o

- sirn{w-n) )
» (J(Tl) mv— I\ '-4_9

n=-w

— N - vy . o - Ve, L Y ~ 4 -
Thur, there s ¢ 1inn Lelween e anplitude Sampler of the treguenc

and the z\.l voefficients which are determined by the zeros.

In 2 similar manncer, a finlte ¢os x pulse can be obtained through the
process of 2zero relocation in the following manner. Assumce a rectangular
pulse G6yver the interval It‘l < n., Its transform can be shown to by of the

form

Glo) = 29 20T Y IV -30

with zeros occurringat oy, v 2 ...




Now, if the kth zero-pair is moved to the location of the rth pair, then

G(w) becornes

2

2w sinw —w‘(l—_?—)
G lw) = - IV -3]
I -w
™l ——y—)
I
The corresponding time function becomes
2 1
g (=1 - (P_uz—) cos k{t+m) Jt] < = IV-32

where p = r/k. Thus, vne now has independent control over the amplitude and
frequency of this time function,

Since the family of raised cosine pulses are used frequently as weight-
ing functions, the transforms of thece pulses werc obtained to note their
relationship to the process of zero removal,

If one assumes a family of raised cocsine pulses of the formn

g(t):cosn—r;ft— |t|< %-
-oC IV-33
=0 otherwisc
Then G(f), the Fourier transiorm of g{t) can be shown to be
._ZT nt COSﬂfT . 1,3 A2
G(1) = T _] ; n odd IV-34
2 2
" (Ck+ 1)° - a1 1‘J
k=0
or
1‘1

mymane




fey Tn! sin wiT|{

G‘f)'T/Z . [ —T ] n even IV-35
/4 4k2(l—T2LZ)
k= k

Note, the form of Iv-351s such that a cosine pulse raised to an even power of
n is equivalent to removing the first n/2 zeros nf sin{xr { T)/n £ T. These
2eros occur at f = k/"I‘ for k=1, 2, +++, n/2 and are those removed by the
factor (i -'I’Zfz/kz).

From Ily. IV-35, a link can be shown to exist between the process of
2eroremoval, meditied or weighted Fourier series, and the technique pro-

5)

poscd by Blackanan: I'his linw 1s illustratced as follows: Consider the syn-

thesis of au arbitrary pulsc given by

ol

- 1IV-36
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This synthesis can be viewed in two sections. First over even n and then
over odd n. Those reised cosine pulses over even n are equivalent to a
weighted addition of zero removed sin x/x pulses, A cosine pulse raised to
an odd power of n can be viewced as the product of an even power (n - 1)
nultiplied by cos(r t/T). Thus its transform can be written in the form of
q. IV-35 with a =hift to ihe left and right (in frequency) of (/2 T). Equation
IV -3 is therefore a weighted swnmation of zero removed sin{n £ T) /o £7
pulsces,

The relationship between Eq, IV-3¢ and a Fourier series expansion

1= obrained Ly neting the torm ot Tehebyche{t polynomials. These poly-

nornials arc dofined as

"




Vn(x) = cos{n cos™1 x) IV -37

and if x = cos ©

Vn(x) =cosnb IV -38

then a trigonometric polynomial or Fourier series

N-1
f{6) = ) B_cosng IV-39

n=0
is equivalent to a polynomial in x given by

N-1
n

f[cos-lx] = E Cn x IV-40

n=0

The relationship between the Bn and Cn coefficients relate the expansion of
IV-39. Thatis, the C_ are identical to the A for x = cos(nm t)/T. The poly-
nomials given by Eq. IV-37 relate to Bn and An coefficients. The procedure
would be to first expand a function in a Fourier series. Then, through the
use of the Tchebycheff polynomials, calculate the Cn coefficients. Using
equation (or expansion) [V-36 expand the function yielding the An coefficients,
Then relate the An and Bn coefficients yielding a weighted Fourier expansion,
Blackman's technique involves the synthesis of a desired character-
istic in the frequency domain through a summation of raised cosine pulses of

the form

!H(COSuT)lzz Y hn cos" wT IV -41

wherc w is the digital frequency function, Thus Blackman's technique is a




synthesis procedure with raised cosine pulses in the frequency domain and,

therefore, zero-removed sin x/x pulses in the time domain. His procedure

attempts to link the hn coefficients with those given by

N-1

H(Z) = ) a_ z™" IV-42

n=0

Although the process of zero removal and relocation was not extend-
ed to yield the complete characterization of finite pulses, it did illustrate
the tie-in among the various synthesis techniques, These techniques all
center about a finite Fourier series approximation in some form, whether
it results from truncation of the infinite Fourier series expansion of the
desired function, the truncation of the infinite Fourier expansion of the
characteristic obtained through the bilinear transform (as in IV-B) or the
discrete version discussed in IV-A,

Two basic procedures which can be used in the design of nonrecur -
sive digital filters have been discussed. The first procedure was based on
the assumption that the desired frequency characteristics were available
only at discrete points. The second approach proceeded on the assumption
that a satisfactory recursive design was available, These recursive coef-
ficients were then converted to a nonrecursive design with illustrative ex-
amples indicating the simplicity of the technique as well as improvement

that this technique offers over the more conventional Fourier series approach.
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V. ERROR CONSIDERATIONS

As noted by KaiSer,(9> Gold“m and others, there are essentially
three sources of errors associated with digital or discrete time processing.
The first error results from the sampling and quantizati .n of the input
signal. The second error is due to the representation of the filtering coef-
ficients with a finite number of bits, The third error is one of computation-
al quantization. That is, the digital filter is an arithme‘ic unit which per-
forms the operations of weighted multiplication and additions., There arc
therefore errors caused by roundoff of these results which are often
utili.Zed* in turther computations,

In this section, various aspects of the latter two types of errors
will be discussed. The relationship between coefficient accuracy, stabil-
ity and critical filter parameters will be detailed as well as the effect of
alternate synthesis or implementation procedures. The relationships
between computational quantization, normalized sampling rates and various

implementations will be discussed along with an error reducing procedure.

A, STABILITY AND COEFFICIENT ACCURACY

It can be shown that the evaluation of the denominator of the digital
filter transfer function H(Z) at the point Z._1 = 1 gives an indication of the
maximum allowed variation of the digital filter coefiivients {or stability to

be mai.ntained.(1 b For a digital filter of the form

B . .
In recursive or feedback type filters, prior oulputs are rcpro-

cessed,




this index is of the form

or as it is morc conventional to divide through by the by coefficient, this

index is given as

The tabular approach to digital lowpass filter synthesis utilizing the

bilincar transform as discussed in Section II, provides for a simple evalua-

tion and interpretation of the above stability index. Consider the taile used

to generate the coefficients as shown on the next page.
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TABLE I

. . N N-1 N-2 0
Coefficients POKE Pl K; PZK‘G e PNKB
u u u u
0
z(ao,bo) 1 1 1 1
-1 N
27 (a,.b)) C, () () ()
-2 N
z c, () () ()
. d. .
1,)
“N{a,,by) | cN () ¢ )
z N’ "N N
where
cN . N
T Tl -~ r)!

N

Y d, . =0 1< j< N

o I,J

i=1
N
) = 2N -
udi,o-z V-4
1=0

To obtain the denominator (bj) coefficients frcm Table I, one substi-
tutes for Pj the appropriately subscripted denominator coefficients of the

analog filter (Bj) and sums all the products of the table entries and c¢olumn
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headings for row j. 1f, however, the stability index is formed by summing

wrole bibl g

down each column then, utilizing V-4, FO becomes

N
(ZKa ) BO
F() = _N'_u— V-5
N -1
L BiKg
i=1 u
where
Tu
KG = tan(m -f—) V_o¢
u s

It can also be shown that stability becomes marginal when FO is equal
to zero, Thus, the coefficient accuracy problem is most acute when the
order of the filter is high and the factor KG is small. With KU defined as
in V-6, small values of KG occur when theuratio of sampling ralll:e to cutoff

u
frequency is high. When this is so, V-5 can be approximated by

N -
Fos(ZKau) V-7

and the digital filter coefficients approach in magnitude the binomial coef-
ficients and alternate in sign. This result is obtained from Table I in that
the coefficients of the last column can be shown to be the above mentioned
binomial coefficients,

This equation clearly exhibits the effect of the order of the filter and
the ratio of bandwidth to sampling rate on the stability problem. Table I
also gives a great deal of insight into the effect of truncating the filter coei-

ficients, Consider row i of the table, given as
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+d B KY" Yy ...4 B gN-a+b o+ Ny
u o w, i,a a-1 w“ 1 N

Now the coefficients cf the analog filter paired as (B BN)' (}Sl. B )

N-1

(Bi’ BN i) are most often of the same order of magnitude, Furthermore, it

0’

can be shown that the di . cocfificients can also be paired in the sameo¢ manner.

Thus, if the summation is a“complished in the foregoing pair-wise manner,

then one is adding terms of the form

MKE [Kri'“‘ + 1] V-9
wu W

u

When the ratio of sampling rate to bandwidth is high and the order of the

filter, (N) is large, then Kr%- 2k can be considerably less than 1 -- especially

u
for small k (towards the outer cdges of the table). Therefore, in effcet, the

truncation problem effects the highest order analog filter coefticient first.
That is, BN is effectively set cqual to zero in both the numerator and de-

nominator. Thus, if the analog filter was originally of the form

s A N‘l+ .o A
0 ) %
G(S)- -,q T V-10
b BN lb + - 130
It then becomes

A s N1 + A

- .
Gs) = 2 V-l

BN-I‘S + - BO

X . . A
Althouph the numerator and denominator are usually ot difterent

order, they can always be written as shown, by adding the required zeros,




Therefore, one is actually synthesizing a lower order filter as one truncates
the coefficients, Of course, the more coarse the quantization, the more
coefficients (from the high end) become deleted. This reduction of the order
of the filter explains the results obtained, in that as the quantization process
continues, the filter slopes do decrease, which signifies a lower order
filter., The onset of instability is due to the fact that the remaining coef-
ficients are not changed as the order is reduced so that the zeros (or poles)
of the polynomial shift in a complicated manner. It should be noted that for
values of KG close to .5, F,gets smaller with increasing N at a very slow
rate. This vlzlzlue of KEJ corresponds to a2 sampling to cutoff frequency ratio
of approximately 7:1. *

A similar result can be obtained for the bandpass case. This is
most easily seen if one applies the LP-BP transformation with a 4:1 ratio of
sampling to carrier frequency. As noted in Section II, this transformation
is obtained by replacing z"! by -27% and K- by Kg. Thus, the same table
can be used if alternate rows (even numbereg) are multiplied by -1 and
KU — KB . It can also be shown that the sum of the entries in any partic-
ular column is equal to zero except for column 1 where the entries sum to

ZN. Since, in the low-pass case stability is determined by evaluating the

denominator of the transfer function at Z-1

yields BOZNKIg . For the bandpass case, the point 2~ = e

u

= 1, then the low-pass case

tjo T
o

replaces

the point Z~1 = 1 in the stability computations. However, for the case

under discussion, GOT = r/2 and Z-l =t j. Thus, Z"Zn = -1 for n odd and

=L . . . . .
27" =z | for n even. This alternation in sign effectively cancels out the
alternation in sign due to the transformation and the stability index for band-

pass filters is given by By, ZN KI;, Thus the index becomes



where the Bi coefficients are the denominator cocfficients of the low-pass
analog filter,

The foregoing results indicate that synthesis of a high order filter in
conjunction with a high ratio of sarupling to cutoff (or bandwidth) frequency
should be avoided. These conditions on the factor KGF would, for example,
occur whenever it is desired to filter a narrow band s:}pment from a broad
bandwidth signal. The narrow band constraint dictales a small'x'u whereas
the byoad bandwicdth dictates (through the use of the sampling theorem) a
large fs. The foregoing results indicate that rapid degradation occurs when

the above ratio exceeds 7:: (K_.. < .5). Under these conditions, a cascade
A

u
approach to digital filter synthesis yields a significant improvement, The

following will illustrate this improvement.

B. CASCADE vs. DIRECT SYNTHESIS
With the foregoing constraints to be illustrated, an ellintic filter

was designed with the specifications assumvd to be

Passband Spec. .01 db ripple 0<w<

[

Stopband Spev, 40db attenuation L3I < w<d w

Utilizing the techniques of Section III, the above specifications led 1o a gix'h

order analog filter of the form




S + AS + A
1(S) = =
) 3 .
YoB st
o i
i=0
where the coefficients are given as
TABLE II.
= 6.7 ) =
AO 6. 79609 BZ 5
Ad--5.40108 BB=6
Bo=l.26743 B4:5
B q =
Bl 3.,44569 BS 2
Bb =1

L7173

. 29689

. 06663

. 62193

Solving tae numerator and deneminator pelynomials of V-135 the pole-zero

configuration for this filter can be shown to be

JTABLE HI
zoztj1.84538
‘) =131 41268
p, = - .lorozt 112369
p, = - 39629 % .99211
Py = - 8129391 45946

Initially, this filter was digitized under the conditions that the signal s

sampled at 6 times the cutoff frequency of the filter, Thus, K = tan(aoT/Z) =

(zeros)

(poles)

tan(r /6) = ,57735. Utilizinp Table II of Section II, substitution of the above

parameters yiclds the following digital filter coelficients,

Il

ey !Il:wnll b
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TABLE IV

Nunicrator Coeff. Denominator Coeff.
a, " 1.)1851589 b0= 6.31772532
a, = 2,0438115 b1 = -12, 6964865
2, = 2.8421442 bzz 1%.4185285
ag = 3.9669833 b3 = -14.8467182
a, = 2.8421442 b4: 8.34145098
ag = Z2.0438115 b5 = - 2.65466173
a = 1,1851589 b6= .424433844

This filter and the filter obtained by rounding the above coefficients to five
significant figures, three to the right and iwo to the left, are ploited in
Figure V-1. As dictated by the 6:1 ratio, the cutoff frequency of this filter
is at 2w /6rad or 60°., As can be seen. therc is essentially no difference
in the filter rosponses.

This filter was then syvnthesized using the cascade approach-. The
procedure used was to perform the factorization in the analog domain in the

iollowing manner: The .ilter G{S) was c¢xpressed in cascade form as

iS) G, (5) V-4

G(S) = G,(S) G, ;

where both Gl(S) and GZ(S) are of the forin

G (S){G,13)) = - V16

G

The filter G,J.(_S) is of thic form

3t
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G,(S) = ——— V-16

S +BlS+B0

Using the results of Table lII, the foregoing filter characteristics become

) (S + j1.84538)(S - j1.84538)
Gl(s) T B+ Y0102 + 1. T2369)(5 # . T0I0Z - J1.12389) v-17
_ (S +j1.41268)(S - j1.41268)
S e R s LT A4 B b 2wy e 113 R w720 M AL

- l M
G38) = BT BT9TF ] 35926) (8 7 BT294 < 3. 3594%] v-19

If Eqs. V-17 through V-19 are expanded and the bilinear transform applied
to these filters utilizing the technique of Section I[I-A with KG = ,577356 =

u
tan(20°) then the three digital filters become

Filter 1 (from Gl(S))

ag = 2.135 b0= 1.541
a = . 270 b1=-1.151
a2=2.l35 b, = 1.308
Filter 2 (from GZ(S))
aO:l.bbS b0= 1.839
alz-.670 b1=-1.239
a, = 1. 665 b2= g22
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Filter 3 (from G3(S))

a4 = .333 b0= 2.230
al=.667 bl=-1.4l9
a, = . 333 b2 = .352

The product of these responses was obtained and compared with that of
Figure lI-1, showing no significant difference.

The above procedure was repeated for a higher ratio of sampling to
cutoff frequency to illustrate the previously mentioned degradation. Using
K‘3 =.17633 = tan(lOo) (i.e., a 20° cutoff) the sixth order digital filter coef-

u
ficients become

TABLE V
ag = . 036517931 b0= 1.66053236
a = -. 050516111} bl = - 8.1507299
a, = -.033249521 bZ = 17.0485004
az = . 107569042 b3 = -19.3912146
a, = -.033249521 b4 = 12.626522
ag = -. 050516111 b5 = - 4,4568362
“g = , 026517931 b6= . 665664076

This filter and the one obtained by rounding the coefficients as before, (3
decimal digits) are plotted in Figures V-2 and V-3, Note the severe change
in filter performance. Thatis, the curve of V-3 is unrecognizable as a low-
pass dipital filter. This illustrates the problems involved in a direct

synthesis of a high order filter where the ratio of sampling rate to cutoff
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frequency is large and coefficient rounding is desired. Once again this
filter was synthesized as three cascaded filters with the respective digital

coefficients obtained as before as shown below.

Filter 1 (from Gl(S))

30 = 1.106 bO = 1.175
= - 7 b = - y
a, 1,788 By 1,921
a2 = 1.106 b2 = 1,004

Filter 2 {(from GZ(S))

a, = 1.062 bO:: 1.175
al=-l.876 bl=-l.929
a, = 1.062 b2 = . 895

Filter 3 (from G3(S))

'a0=.031 b0= 1.314
al=.062 bl:-l.’-)46
az=.03l b2= . 140

The product of this response was obtained aad plotted in Figure V-2, A

comparison of this response and that of the rounded and unrcunded direct

*
filter as shows the definite advantage of the cascade approach,

* . [3 > .
An alternate approach to comparing the cascade vs, direct approach
. " (12) - N
was investigated by Knowles and QOlcayto, who modeied the cocfficient
truncation problem as a parailel error filter and used a statistical approach

to evaluate performance.




The foregoing results were expected in view of the resulte on coef-
ficient errors and generalized design procedures which showed that the

N -3
coefficients are primarily determined by factors RjKGS ) where Rj is the

u
analog filter coefficient, N is the order of the filter and Kg is the normal-
u
ized cutoff frequency. Thus, as K5 is reduced the effect of R). is lost for
u

large N as the coefficients are rounded.

C. COMPUTATIONAL QUANTIZATION
The nature of computational quantization is dependent upon the partic-
ular implemsantation used. A digital {ilter recursion equation expressed in

direct form is given as

N N
- © AN -
Yo 2, aj xn—j 2 Jyn-j v-20
i=0 j=1

When computational quantization occurs at each operation of V-16, the

recursion equation becomes

N

N

- m <« ! . v 0 s _

y =Q oo jacx 3, Qn,j[bj Yn-j v-21
i=0 j=1

where Q'[e], Q"[#] ana Q"{¢] represent the operation of quantizing the
function cn whicn it operates.
If one represents the operation of quantization by an equivalent addi-

tive noise source n' as
Q' (0] =n'+a

then V-21 becomes

a3




-~ _ \-\ _ w) ,
Vo=t L %5 ®n - j ij‘n-l v-22

where Qn is the total quantization noise ia the svsiem (i.e., Qn =n'+n"4n"™),
Thus, the error be¢comes

N
v -~y = = - \" oy
Yo " Yu© 0y & Ay b..._ € . V.23

If it is assumed that the quantization noise has a white spectral density, the
mean square output nnise 1s given by

2
o

- R o! P T 7 .
M.S.O.N = { ,,J.)?Hl 2 B (27 S5 V24

~
“

where

Hl(Z):—_—N-l—_ V.25
1 - Vop ozt
- 1
1=

the bi are the denominator coefficients of the original filter and °; is the
mean square input noise which is dependent upon the degree of quantization.
Thus, computational quantization has been expressed by an additive
noise source, processed by H1(7.) which consists only of the denominator ¢r
poles of the original filter.
Consider the input-oulput equations of a digital filter synthesized
using the canonical form. In this case the tr. sfer funciivn corresponding

to V-20 piven as




a Z'n
n
H(Z) = x5} = S—— = D7) v-26
AL
n
n=0
is rewritten as
L) - Y2 gy V.27

N{7)
where F(Z) 1s some arbitrary function, Inverse trunsforming the two equa-

tions specified in V-27 yields

n n j n-j
j=1
V-28
N
- ¢ ;
Yn= L ajin—j
j=0

y
where fn is an intermediate variable introduced. This is the so-called

canonical form.

If, as bhefore, ane assumes that quaniization occurs at cach stage and
that the operation of quantization is represented by an additive noise source,

then it can be shown that the crror is given by

N N
€ = ?‘ a. Q P R N . V-29
n - 7] Thaj — T} n-j

J:O =1

"This pair of ecuations is relaiwed 1o the state-space concept utilized

in ontimal control,




Thue, under a white noise assumption, the mean square output noise is

given by
U2
_ Q -1 d<
M.S.0.N. = () $ Hy(2) H,(27) = V-30
where
N
Y oa zt
L %
ey . 1=0 )
}.12(,;)_ w V-31
1+ 5 b2
i=1

Thus, for this form, the noise is processed by IIZ(Z) which is identical
to the original filter H(Z). Hl(Z) consisted of only the poles of the original
filter whereas Hz(Z) consists of the poles and zeros, that is the entire original
filter .

Utilizing the relationships concerning the generalized design proced-
ures for lowpass filters (Table I) it was desired to determine the relationship
between the output noise and the ratio of sampling rate to cutoff frequency
for lowpass filters synthesized using both of the previous approaches.

The filters investigated were second order lowpass, all pole filters

of the form

G(S) = —s ! V-32
AS“+BS+C

Evaluation of the integrals (M.S.O.N./Ué) and utilization of the generalized

synthesis techniques yielded
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where

Direct Synthesis

CK% + A
M.S.é).N. - u 5 V-33
o 16 ABC K=
Q W
u
Canonical Synthesis
KCS (BKG + A)
M.S.?.N. 2u u V-34
OQ CK_L +BK_- +A
w
u u
T
KC =tal'1~7—— V°35
u s

The above results were cvaluated for a Butterworth, Chebycheff (1/2db

ripple) and 2 Maximally Flat Time Delay Filter. The coefficients for these

filters are

Butter wortE

n
e

1
=]
o

"

A

Chebycheff

A=1 B =1.4256245 C = 1.5162026

-1

w

P, = -, 7128122 1 j1,0040425 V-

Maximally Flat Time Delay

A=1 B=3 c=3

p, = -1.5%;.8660254 V-33
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These results are plotted in Figures V-4, 5 aad 6,

It is to be noted that at high ratios of sampling rate to cutoff frequency,
the caronical form is vastly superior. There are, however, regions where
the direct synthesis should be used,

The results obtaincd indicate the importance of determining the value
of the parameters KG . This parameter not only determines the synthcsis

u

technique used, but also detzrmines the required coefficient accuracy,

D. AN AUXILIARY STCRAGE TECHIQUE

In the previous section, expressions were derived showing the effect
of computational quantization as an error producing equivalent noise source.
This discussion will develop the concept of an auxiliary storage to be used
to reduce these errors.

If +he round-off portion discussed previously is stored in an auxiliary
storage and the main computatiou proceeds as prescrited by the applicable
model and some quantization levei, the accuracy of the output value, Y, may
be corrected by appropriately weighting the contents of the storage and add-
ing it to the output.

In crder to make a "p-rfect" correction, all prior round-off-seg-
ments have to be stored and multiplied by appropriate coefficients with
complete pre:izgion. Since this is obviously impractical, in the general
rase¢, the technique developed will permit a conservative estimate to be
nade of the error due to truncation in previously rounded-off samples as
well as the quantization present in the round-off arithmetic,

From Eq. V-27, the error, E(Z), and the round-off or quantization

Q!2) are related by
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E(Z) = Qyi;z)
1+ ¥ J A
j=1

As noted previously, this recursive equation can be converted to a non-

r ecursive form yielding

©
T
fnT L Yk9%-k V-40
k=0
Thus
o)
Vo=V, Y C, 9, .y V.41
k=0
where
Co=l
N
=_. ¥ .
Ck L bj Ck-_] V42
j=1

A block diagram of the systen: utilizing Eq. V-40 and truncating
the nonrecursive form after k terms, is illustrated in Figure V-7,

There are three ways to use this technique to advaniage. In the first
. th . . e . )
instance, where only the p  filter output is necessary, a relatively gross
running arithmetic would be necessary, after which the pth output would Le
refined using some number of current and prior round-off values talken from
the piggy-~bank, This simplifies the running arithmetic at the expense of

increased storage.
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The second use of the storage is to periodically test the error, (at a
slower than input sample rate) improving the value ;'n with the weighted over-
flow whenever the error value overflows. Overflow is defined as that part
of the error equal to or greater than the gross quantization of the running
arithmetic. The residue of the overflow would be reinserted as the new

round-off for the nth

value and the whole process repeated,

The third possible application is dependent on the nature of the over-
flow. If the bandwidth of the overflow samples is small relative to the input
samples, then it is conceivable that a refinement of ;n can be made periodi-

cally but at a rate slower than the input sampling rate.

An Illustrative Example

An example 18 next presented for an arbitrary filter where the sum

gth

never overflows. However, a correction is made at the sample time

using a truncated (approximate) and non-truncated (exact) technique.

Example
Assume the filter is given by

Yn20%n -~ blyn-l - be

n-2
where:

ao=l
bl=1/2
b2=l/4
x =1 n> 0
n —
x =20 n< 0
n

Table VI lists exact values of the output, Yo' approximate values of the out-

-~

put, y_, assuming a quantization of 1/8 and the resulting round-off.
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TABLE VI

EXACT AND APPROXIMATE OUTPUTS VALUES

noQex, dyYi PpVale Yn Yn 1Yo

0 1 0 0 1 1 0 0

1 1 1/2 0 1/2 /2 1/2 0

2 1 1/4 1/4 1/2 1/2 1/4 1/4 0

3 1 1/4 1/3 5/8 5/6 1/4 1/8 0

4 1 5/16 1/8 9/16 1/2 5/16 1/8 1/16

5 1 9/32 5/32 9/16 /2 1/4 5/32 3/32

6 1 9/32 9/64 37/64 5/8 1/4 1/8 0

7 1 37/128 9/64 73/128 /2 5/16 1/8 1/16

8 1 73/256  37/256 73/128 1/2 1/4 5/32 3/32

9 1 73/512 73/512 293/512 5/8 1/4 1/8 0
Assume a guantization of 1/8
and record (i.e., store) the
round-off q,-

By using the algorithm for obtaining Cg' the following cocfficients
arec developed.

CO =1, C
C.= /128, -

=1/2, C,=0,Cy= -1/8, C,= -1/16, C,=0,Cp= 1/ 64,

1 3

Using thesc coefficients, the error for the 8th sutput will be computed.

Eg=1x 3/32 - 1/2x1/16+0x 0+ 1/8x3/32 -1/16x1/16+ 0x0
+1/64x 0 -
E, = 24/256 - 8/256 + 3/256 - 1/256 = 18/256 = 9/128

8
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Vg = 1/2 = 64/128
since

¥g = ¥g * Eg
Yg = 73/128

The above numerical example illustrates that the exact result is ob-
tained if all of the round-off values are used,
If only the current and next to last round-off values are stored, an

approximate correction to y is obtained as 37_1

where ;n =Y, + En

Eg=1x3/2-1/2x1/16=2/32=8/128

Vg = 72/128.

The error, after refinement, using the approximate correction is one
part in 128 while the error between Yg and Vg is nine parts in 128.
If the round-off error is pessimistically assumed to be always equal

to the least significant bit (LLSB) then the max error En max is defined as

En(max) = lim S(LSB)
Kk — ®
where o
lim S = \ﬂ C
e g

k —» ® g=0

For the example above lim$S = 4/7 and LSB = 1/8.
k —&

E_max 4/7 x 1/8 = 1/14. 1If the storage values are not utilized

at all, the max error for the conditions assumed would be less than 1/14,
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If the stored round-off error itself were quantized (which is generally

the case) then the error (conservative) due te this approximation would he
1imS - (LSB), Where (LSB) is the least significant bit of stored round-off

k — o

value, Thus, this auxiliarv storage technique offers the possibility of reduc-

ing errors,

Two sources of errors in digital filtering have been discussed. The
errors resulting from a truncation of the filter coefficients were related to
such critical filter parameters as the order of the filter and the ratio of
sampling rate to critical frequencies using the tabular approach. This ap-
proach allowed for an interpretation of the filter degradation, the onset of
instability and the bit truncation of the filter coefficients. The conditions
under which the cascade synthesis approach is preferred is also discussed,
The errors due to computational quantization and the effect of both the direct
and canonical implementation forms on these errors are then discussed.
Curves are obtained showing the regions in which one implementation is
superior to the other. Lastly, an error reduction technique utilizing an
auxiliary storage approach is presented, This tecnnigue offers the possilili-

ty for reducing computational quantization errors.
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Vi, RECOMMENDATIONS

As is often the case with analytical studies, the various techniques

investigated suggest areas where {further efforts would be desirable, In

addition, some of the results themselves may show sufficient promise to

warrant experimental justification or breadhoarding. Summarized below

are the areas which, as a result of this investigation, fall into the above

categories,

1.

(2]

The results of Section II (B and C) and Section III, concerning the
various techniques and counstraints which are associated with the
design of bandpass filters, point out the interplay between the samp-
ling rate, carrier frequency, and filter bandwidth, The forejoing,
in addition to the results of Appendix A, clearly chows the need to
develop sampling and processing techniqucs which will enable one to
operate digital filters at sampling rates at or near the information
bandwidth,

The results of Section V (A and C) concerning stability and coef~
ficient represcentation illustrate the difficulties encountered when
filters are to be designe” under the constraints of small Km factors

and high order filters. J.nce truncation invites stability prc?blcms
and the foregoing constraints require an inordinate amount of pro-
cessing, techniques should be investigated which overcome these

difficulties and will thus allow for the p- ocessing or extraction of

narrow hand information from broadband signals.

The error considerations discussed in Section III indicate that the
cevelopment of techniques which provide for approximate filter shapes
through coefficient modification should be investigated, These
modifications should be directled towards an vverall reducton in the
time required to perform the arithmetic processing.

The results of Section II (B and C) and thosec of Section IIl (C and })
suggest that a more detailed study be made of the relative advantages
of the two specific bandpass {ilter design techniques discussed. The
shifting technique offers a possibility for developing the bandpass
coefficients from thosc of the lowpass filter directly on line. It also
appears more desirabie for tracking filter applications. The LP-BP
transformation o:. 'r% other advantages in terms of control over band-
width and carrie- :requency,

The results of Scction IV indicate that a {further iavestigation be direct-

ed toward the relationship between the process of zero-removal and

relocation and the class of allowable frequency response characteristics

achievable for nonrecursive filters.
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An extension of the results of Section V-C concerning computational
quantization is desirable., This extension to higher order filters as
well as arbitrary baundpass filters would allow the designer to proper-
ly choosc the best implemientation for the particular critical para-
meters of the filter,

The error reduction technique discussed in Section V-D has shown
sufficient merit to warrant an experimental brcadboarding. This
auxiliary storage technique area requires some additional study with
regard to the optimum number of cocfficients to be used in the storage
"bank" as well as a determination of which of the three modes it should
operate,

An experimental investigation should be initiated concerning the digital
oscillator implementation technique discussed in Appendix B, This
technique has applications to such areas as frequency translators,
bundpass processing and tracking filters,

Besides the discussion of the shifting technique for bandpass digital
filters and the nonrecursive design from tabulated data, the majority

of the synthesis techniques discusscd have utilized a transformation
procedure which converts an analog filter to an equivalent digital

filter. These appruaches might be generally termed digital equivalence
procedurces. An alternat. approach is to synthesize digital filters with-
out reference to an eGuivalent analog filter, This approach, which
might be termed direct dipital synthesis, warrants detailed investiga-
tion in that it will ailow Jor merce flexibility in the designs that can be
achieved. Two approaches to this problem of direct design which have
been investigated to a limited extent under very specific conditions
have utilized polynomial approximation procedures and pole-zero
shifting procedures in the Z plane, Both of these procedures as wel

as several other approaches should be expanded for usc in the direct
synthesis of dipital filters,

l (4] ("A
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APPENDIX A
A BANDPASS SAMPLING TECHNIQUE

The sampling and reconstruction of a lowpass signal with a (positive)
bandwidth of B/2(Hz) and ac spectral energy beyond this frequeacy can be
accomplished (theoreticaily) by sampling at a rate of B samples per second.

B also represents twice the highest frequency component present in the signal.
1f this procedure were carried over directly to bandpass signals, unrcasonably
high sampling rates would result. Moreover, since it is well known that the

information content in a signal is dependent upor its bandwidth and not its

center frequency, one would expect that it is possible to recover the bandpass
waveforem with a sampling procedure at rates in the order of the bandwidth
of the bandpass signal. Direct application by the samgling theory for band-
pass signzls shows this to be the case,

The periodic nature of digital filters suggests the following sampling

procedurc. Assume a bandpass signal as shown Delow.
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The process of sampling produces spectral repeats or aliased spectra

at multiples of the sampling frequency. The repeats are shown as the dotted

spectra. It is desired to choose a sampling rate, fg, such that there are no

spectral overlaps. With this objective the following constraints can be placed

upon fg, B, fl and fz. Let k be the index representing the kth repeat or

shifted spectrum. Then for no overlap at bandpass one requires

-f2+kfs>f2; -f1+(k-1)f$<f1 A-l

Simplifying equation A-] yields

2
s> x f
A-2
2B
fs <x1 f2 " %o
or
s > 2 fE.
B " kB
A-3
b o2 Lo 2
B “k-1 B k-1
From these equations one obtains
fs > 2B
A-4
f2
1< k< =

Thus, the absolute minimum allowable sampling rate is 2B. The
allowable normalized sampling rates relative to fZ/B, the ratio of the upper
frequency to the bandwidth, are shown in figure A-1. This diagram shows

that care must be exercized in choosing a sampling rate. It is of interest to

note that the sampling rate of 2B is allowed only when iz and B are integrally

related. It is also of interest to note that if two sampling rates fs 1/B and ‘
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fS 2/13 are chosen (f?_ > {l), then the allowable sampling region or area can be

shewn to be

which is independent of k. Furthermore, the extend of validity on the fZ/B

axis is
. ts -fs fs
PN Y I LT G Acs
|l B 2B

which is an increasing function of k.

The foregoing considered the required : ampling rate for no bandpass
overlap. Additional constraints should be placed on the sampling rate in order
to filter this signal digitally at a reasonably low frequency. One such con-
straint is to require that there be no spectral interchange. That is, if the rth
rcpeat is the last negative repeat from the negative spectral lobe (moving to

: th . - L
the right) the {r+1) " repeat is the last positive repeat from the positive spec-

tral lube !moving to the left) then for no spectral interchange one requires

that

(r+1)fs —f2>f2~ rfc

{ £,
S I
B "72iq ] B

As an example of the case where the sampling rate is sufficient for no spectral

cverlap but spectral interchange does occur, consider the following. A band-

pass signal has fZ = 250 Hy, fl =150 Hz, B =100 as shown below
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fs is chosen as 270 Hz, As shown in the figure, no spectral overlap occurs,

but spectral interchange occurs since

£ {
s _ u _ B _
—B—-2.70 -B-—Z.SO r=20 A-8

Thus from A-7, 2.7 must be greater than 2x2.5=5 which is not the case.




APPENDIX B

DIGITAL OSCILLATORS

Digital oscillators play an integral part in such areas as freqguency
translators, heterodyning teckniques and tracking and frequency hopping
filters as well as other applications. Thus several configurations for the
digital generation of sine and cosine oscillators will be discussed.

A starting pownt in the development of these generators is their 2

transforms which can be shown to be

cos w_t
0
1 - (cos a) Z-l
Z ]c05u t$= - u-l — B-1
© 1-2(cosa) 2+ 2Z
sin w_t
o
(sin )z'1
Z s'mc._‘ts = a T — B-2
v 1-2{(cosa)Z + 2

where a is 2n divided by the ratic of sampling frequency to center irequency.
That is the sinusoidal values are obtained at increments of a (radians).
In equations B-1 and B-2 the Z transforms are in the form of a retio.

Therefore, they can be interpreted as transfer functions of a recursive

digital filter, inversc transforming these equations leads, respectively, to
Cos w t
(8]

Xy {cos a) X

R
i

+ (2 cos a)yk -y B-3

-
1
—
g
o
o]
~—
~

A i (2 Cos a} Yl ™ Yk.2 B-4




Thus, these generators have been modeled as recursive digital filters whose
impulse responses provide the samples of sine and cosine at any desired in-
crement. That is, if 20 samples per cycle were desired, then a = (er/20)=180
and the outputs would correspond to the values of these sinusoids at 18° incre-
ments. It should also be noted that these digital filters have poles on the unit
circle and thus if allowed to run indefinitely an " infinite" amount of noise
would result due to cormputational quantization, This problem can be circun-
vented by periodically re-starting the oscillators. The implementation of these
generators 18 shown in figure B-1. The dotted region of the figure is shown
merely for illustrative purposes and represents the first two initial conditions
to be loaded into the delay elements. That is, the cosine generator requires
K and K cos a and the sine generator 0 and Ksina. Thus B-3 and B-4 can both

be written as

cos w_t (and sin w _t)
o o

Vi = (2 cos a) Yier - Yk-2 B-5

where the cosine terms are obtained by setting (y ;, y_,) to be (K: K cos a) and
the sine terms by setting the initial outputs tc be (0, K sin a).

The configuration shown in figure B-1lis instrumented in direct form
and, therefore, has some of the error problems discussed in section VI with
regard to computational quantization. An alternate corfiguration is based on
the idcntities

cos (A+ B) = cos A cos B - sin A sin B

sin (A+ B) = sin A cos B+ cos A swin B
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These identities lead to the recursion equations

Y, © (cos a) Yo + (sin a) X4

x = {cos a) LI (sin a) Yn-1

where the y's represent the sine output and the x's the cosine output. This
configuration is shown in figure B-2, For sampling rates that are in the order
of 10-30:1 and resetting the system every cycle, these two configurations pro-
duced very similar results. Without resetting, the configuration of figure B-2
was superior. A considerable simplification occurs in both of these configura-
tions when these generators yield 4 samples per cycle. In this case,
a=n/2= 900, cos a = 0 and sin a = 1 and the outputs can be shown to yield
the sequence 1, 0, -1, 0, 1, 0, -1, .... This of course merely corresponds to
a sampled square wave and therv are no computational quantization problems.
For this case, the oscillators have been reduced to a rather trivial configura-
tion. This result is expected in that it is common practicc to build hetero-
dyners which square wave modulate a signal in order to shift the signal by an
amount (in the frequency domain) equal to the fundarnental frequency of the
square wave. Energy centered at the higher harmonics 1s then filtered out,

A third configuration yielding improved periormance with less hardware
is shown in figure B-3. This configuration is based on expressing B-1 and B-2

in canonical form. The resulting equatins are

f = x + (2 cosa)l - f
n r Nt ) n-1 r-2
15 5
S (s5in a) .
£ = x'"4+(2cosa)f -1
n ~ (2 cos a) RN n-2
Bo¢
=t - (vos a)t
k‘ ” ( 1> } I‘-:
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From the above it can be seen that since x' = x , f' = fn that the s8ine
and cosine generators share the sa'ne auxiliary variable but are not interlocked
as in figure B-2. It is also to Le noted that there is a reduction in the required
number of multipliers using sine a and cos a. Furthermore, the errors in the
sine a multiplication do not affect the alternate or cosine output.

Using the techniques discussed in section V, it was shown that the
error performance of this configuration is superior to that of the previous
configurations. Simulation of the recursion equations with 10 bit and 14 bit

quantization bears this out as shown in tables I and II.

TABLE I
10 Bit Quantization

Angle (degrees) Cenerated (sine) Ideal (rounded)

(Figure B-2) (Figure B-3)

0 0 0 0
10 . 174 . 174 - . 174
20 . 343 . 342 . 342
30 . 5C1 . 501 . 500
40 . 644 . 644 . 643
50 . 768 . 767 . 766
60 .869 . 867 . 866
70 . 948 . 942 . 940
80 . 989 . 987 . 985

90 1. 006 1.003 1. 000



TABLE 11

14 Bit Quantization

Angle (degrees) Generated (cosine) Ideal (rounded)
0 1. 000 1. 0000
10 . 9848 . 9848
20 . 9401 . 9397
30 .8671 . 8660
40 . 7679 . 7660
50 . 6458 . 6428
60 .5043 . 5000
70 . 3478 . 3420
80 . 1307 . 1737
90 .0083 . 0000

The results shown in this table are for output generated at 10° incre-
ments. For smaller increment, the improvement shown in the performance
of the configuration of figure B-3 over that of the previous figures increases,
Thie is once again due to the fact that the canonical form is best when the
sampling rate is high. The outputs shown in these tables result from quan-
tizing the appropriate equations to the specified number of bits.

Digital oscillators not only are important devices as frequency syn-
thesizers but also play an integral part in such important communication
devices as translétors, tracking filters and bandpass processing among many
others. The configuration of figure B-3 can therefore be combined with the

results concerning digital bandpass filters to yield a completely digital device.
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